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Abstract

As a well-known generalization of the linear model, the Box-Cox (BC) model has 

been used extensively in applied econometrics. There are several reasons for its 

widespread use. First, the BC model nests as special cases the linear and semi­

log models, as well as an infinite number of nonlinear models. The BC model 

permits a researcher to let the data determine the most appropriate functional 

form for a model rather than impose linearity or Iog-Iinearity arbitrarily. When 

theory implies some functioned form for a regression equation the BC model may 

allow testing of the theory. More often, however, theory gives no guidelines for 

functional form, and the BC model provides some statistical justification for a 

dependent variable transformation that may otherwise be ad hoc. Second, max­

imum likelihood estimates for the model are easily obtained in cross-sectional or 

time-series settings using a grid search procedure.

There are currently very few BC models appropriate for analysis of clustered
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data. This dissertation develops a BC model with random coefficients (BCRC) 

that is appropriate for clustered data and shows how Bayesian estimates may be 

obtained for the model parameters. I discuss how the posterior distribution may 

be simulated by Markov chain Monte Carlo (MCMC) methods and how marginal 

likelihoods and Bayes factors may be computed from the simulation output so 

that Bayesian model selection may be performed. The model is fit to a set of 

simulated data to test the performance of the sampler and the estimates.

I then use the BCRC model to risk-adjust the cost of providing inpatient 

hospital care to patients who undergo coronary artery bypass graft procedures. 

Clinical and cost data from four Midwestern hospitals are used to risk-adjust 

the cost of inpatient hospital care and compare the performance of the hospitals. 

Several important issues regarding risk adjustment are addressed, including 1) 

determ ining the most appropriate transformation of costs for the risk adjustment 

process, and 2) whether the hospital-level transformations are similar enough to 

be treated as equal. Results indicate that in these data the most appropriate 

transformation is inverse, and not natural log, and that the transformation is not 

equal across hospitals. Finally, the implication for ranking hospitals based on 

risk-adjusted costs is considered.
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Chapter 1

Introduction

As a well-known generalization of the linear model, the Box-Cox (BC) model has 

been used extensively in applied econometrics [5, 59, 62, 68, 74]. The BC model 

has been widely used for two reasons. First, it nests as special cases the linear 

and semi-log models—the most ubiquitous functional forms in econometrics—as 

well as an infinite number of nonlinear models, and it permits a researcher to 

let the data determine the most appropriate functional form for a model rather 

than impose linearity or Iog-Iinearity arbitrarily. When economic theory implies a 

specific functional form for an empirical model, the BC model may allow testing of 

the theory. For example. Mincer’s [51] theory of wage determination implies that 

the natural log of wages is a linear function of years of schooling. Subsequently, 

Heckman and Polachek [33] and Bushinsky [7] used forms of the BC model to test

1
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the validity of Mincer’s theory.

More often, however, theory gives no guidelines for functional form, and the 

BC model is used to provide some statistical justification for a dependent variable 

transformation that is otherwise ad hoc.

The second reason the BC model has been used extensively is that maximum 

likelihood estimates for the model are easily obtained in cross-sectional or time- 

series settings. Conditional on a transformation, maximum likelihood estimates 

are obtained by ordinary least squares (OLS). Thus a simple grid search procedure 

yields maximum likelihood estimates.1

The BC model has been used in both cross-sectional and time-series settings, 

but research on BC models for clustered data is limited. One explanation for 

this is that the increase in the number of parameters that must be estimated in 

a clustered data model makes maximum likelihood estimates much more difficult 

to obtain. This problem is mitigated in Bayesian estimation, which in many 

cases, and in this case in particular, handles high dimensions more readily than

classical or frequentist statistical techniques. This dissertation extends the BC

Standard errors from the grid search are conditional standard errors and will overstate the 
reliability of the slope parameters. Unconditional standard errors can be obtained by the inverse 
of the information matrix. See Spitzer [68] and Judge et al. [40].

2
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transformation, to a clustered data setting to show how Bayesian estimates of 

the model parameters may be obtained and to use the model to evaluate current 

practices in evaluating hospital performance.

In the next chapter the BC transformation is added to a hierarchical random 

coefficients model, resulting in a model called the BCRC model. I discuss how the 

posterior distribution may be simulated by Markov chain Monte Carlo (MCMC) 

methods and how marginal likelihoods and Bayes factors may be calculated from 

the simulation output so that Bayesian model selection may be undertaken. Fi­

nally, I fit the BCRC model to a set of simulated data to assess the accuracy of 

the Bayesian estimates.

In third chapter I use the BCRC model to risk-adjust hospital costs for four 

regional hospitals. As the structure of the healthcare industry has changed over 

the last decade, there has been an increased interest in cost containment, in hold­

ing healthcare providers accountable for the quality of care they provide, and 

in comparing the performance of healthcare providers. Since healthcare providers 

tend to treat different populations, meaningful comparisons must use performance 

measures that take into account the underlying patient characteristics and co­

morbidities. This has given rise to the practice of risk-adjusting performance by

3
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regressing the performance measure—usually mortality, length of stay, or cost of 

care—on an index of severity or on patient specific characteristics and comorbidi­

ties. Comparisons are then based on the residuals of the regression, which has 

netted out the effect of risk factors and comorbidities. In this chapter I use the 

BCRC model to risk-adjust the cost of inpatient hospital care for patients who 

undergo coronary artery bypass graft (CABG) procedures. In risk adjustment 

models of cost, the dependent variable is usually transformed by a natural log 

due to the skewness of cost data. The BCRC model is able to address important 

issues that have not been explored in the literature, including the appropriateness 

of the log transformation versus other possible transformations, and whether it is 

appropriate to apply the same transformation to all hospital clusters.

Results suggest that in these data, the natural log is not the most appropriate 

transformation, and the risk adjustment is better modeled by allowing different 

transformations for each hospital. The hospital ranking induced by the BCRC 

model, however, was not different from the ranking produced by maximum like­

lihood estimates of the linear and semi-log models. Chapter 4 concludes the 

dissertation with a discussion of possible directions for future research, including 

refinements of the model and and additional issues in risk adjustment and hospital 

ranking.

4
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Chapter 2

The Box-Cox Random  
Coefficients M odel

This chapter presents the BCRC model and develops the methodology that will 

be used throughout the dissertation. Specifically, I discuss posterior simulation 

by Markov chain Monte Carlo (MCMC) methods, show how marginal likelihoods 

can be calculated from the simulation output, and evaluate the performance of 

the estimates by reporting the results from fitting the BCRC model to simulated 

data. Before discussing the BC model in a clustered data context, however, it will 

be useful to review the usual cross-sectional version. This is done in Section 2 .1 , 

and the BCRC model is presented in Section 2.2. The posterior distribution of 

the BCRC model is described in Section 2.3, and Section 2.4 presents an MCMC 

algorithm to simulate the posterior distribution. In Section 2.5 I discuss how to

5
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compute the marginal likelihoods and Bayes factors for the model. In Section 2.6 

the BCRC model is applied to a set of simulated data and the performance of the 

algorithm and estimates are evaluated. Finally, Section 2.7 concludes the chapter 

with discussion.

2.1 T he BC M odel

The BC model in a simple cross-sectional or time-series context as proposed by 

Box and Cox [5] is

Vm = x ^ /3 + e m (2 .1)

where m  indexes observations, xm(fc x 1) =  (1, xm2 , - - ., xmkY is a vector of covari- 

ates, (3( k  x  1) =  (fa , . . . ,  faY  is a vector of coefficients, em ~  jV*(0 . a 2), and the BC 

transformation is y $  =  Two aspects of the model merit special attention. 

First, the errors are assumed to be normally distributed after an appropriate trans­

formation of the dependent variable.1 A dependent variable transformation may 

also stabilize the error variance or make the model more nearly linear. Second, 

the model nests two of the most common functional forms of regression equations.

When An =  1, then y $  = ym — l, and the model is linear. When A™ =  0 the BC

1 Although, this is usually assumed in the literature, several authors, including Poirier [55], 
Showalter [63], and Zarembka [74] demonstrate that the likelihood function is misspedfied unless 
the transformation parameter equals zero. Draper and Cox [20] showed that as long as the data 
are reasonably symmetric, estimates of A are robust to non-normality.

6
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transformation is y $  =  In ym and the model is the semi-log model.2

The transformation, A, is estimated along with the other parameters. This 

allows the data to determine the most appropriate functional form. Furthermore, 

estimates of the transformation and model parameters are easily obtained by 

maximum likelihood. If A is known, the remaining parameters may be estimated

by least squares. Since A is not known, a grid search, typically over [—2 , 2], for

the value of A that minimizes the sum of squared residuals is used to obtain 

maximum likelihood estimates. While there are several ways to obtain maximum 

likelihood estimates, iterated OLS is one of the simplest and is widely implemented 

in statistical packages [40, 68].

Several variations of the BC model have been proposed. Transforming the 

dependent variables as well as the independent results in a model usually called 

the extended Box-Cox model:

yM {3 + £m. (2.2)

2This is a limiting result:

r -  d fr^-lJ /dA  tlim — -—  =  Iim   —-—  by LTOopitars rule
a-»o A a-»o 1

=  Iim x luxA-»o
=  Inx

7
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Box and TidweE [6] apply a different transformation to each of the k  independent 

variables, but not the dependent variable:

ym = x £ YP + em (2.3)

where . . .  , a r ^ ) '.  Box and TidweU’s version tends to have

problems with overidentification. Since each covariate has both a slope coefficient 

and a nonlinear transformation, each confounds the other. Box-Cox models have 

also been proposed in the presence of serial correlation by Savin and White [59], 

and in the presence of heteroskedasticity by Seaks and Layson [62].

2.2 T he BCRC M odel

Given the flexibility of the BC model, there are clear benefits from extending the 

transformation to clustered data settings. This section applies the BC transforma­

tion to a random coefficients model and aUows a different transformation for each 

cluster. Applying the BC transformation to a clustered data model is straightfor­

ward, but the increase in the number of parameters makes estimation difficult by

the usual maximum likelihood techniques.3 Therefore, Bayesian techniques are

3 A similar problem, arises in estimating some forms of the BC model, for example the extended 
BC model and the Box-Tidwell variation [68].

8
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used to simulate the posterior distribution of the model. The BCRC model is:

y[Xi) =  Xibi +  eu (2.4)

where the clusters are indexed by i =  1, . . . , n, yjA<*(ni x 1) =  ( y ^ \  ...,y}*f)', 

ei(rti x  1) ~  a2^m)r ^ i ( ni x k) =  ..-  .Xj*) is a matrix of covariates

with Xy =  (xij ,̂ . .  -, Xijn.)', and l(n i x 1) is a vector of ones. The collection 

of transformation parameters is A =  (Ai,.. . ,An). To give the model random 

coefficients, assume that any heterogeneity in the constant and slope parameters 

across clusters is stochastic; specifically bi(k  x l ) ~  Af(/3,D). /3 is the mean of 

the slope parameters, and diagonal elements of the covariance matrix D give some 

indication of the variation of the slope coefficients across clusters. The objects of 

inference are /3, D, a2, and A.

There are other models for clustered data that might have been used in this 

study. The random coefficients model was chosen because it represents a compro­

mise between extreme treatments of the clusters. Zellner’s Seemingly Unrelated 

Regression (SUR) model assumes different slope parameters for each cluster, and 

pooled linear regression ignores the clustering and assumes the slope coefficients 

are identical across clusters. The random coefficients model is a  compromise be­

cause it models the variation across clusters with random coefficients, which are 

summarized by a mean vector and covariance matrix.

9
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Since the random coefficients model has a natural interpretation in a Bayesian 

context as a hierarchical model, Bayesian, methods are used for inference. Another 

reason for taking a Bayesian approach in this problem is that maximum likelihood 

estimates are not easy to obtain for the BCRC model. Allowing the transformation 

to vary across clusters poses problems for the usual grid search to find maximum 

likelihood estimates since the dimensionality of the search space rises exponentially 

with the number of clusters.4 Bayesian methods, particularly by MCMC methods, 

have practical advantages in many cases where high dimensionality is a problem 

and are well-suited to this model.

2.3 Hierarchical M odel and Prior A ssum ptions

This section presents a hierarchical Bayes representation of the BCRC model. In 

the Bayesian paradigm data are viewed as fixed and parameters as random. Com­

bining prior beliefs about the distributions of the parameters with the likelihood 

function of the data yields the posterior distribution. Inference is carried out 

on the posterior. In what they call hierarchical models, Lindley and Smith [45] 

showed that priors may be assumed not only on the parameters of the model but

also on the hyperparameters of the prior distributions. The random coefficients

Searching n dusters over [—2,2] with a step size of .1 requires 4In regressions.

10
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model is an example of a two stage hierarchical model, where the assumption that 

bi ~  jV(/3, D) is viewed as a prior distribution for b,-, and priors are placed on 

the hyperparameters (3 and D.

To find the posterior distribution of the BCRC model we must first specify 

the likelihood function and define priors. Normally distributed errors imply the 

following likelihood function:

f { y  I b . & D . o 2, A) oc

where the double product term on the right hand side is the Jacobian of the Box- 

Cox transformation. The Jacobian is required because the normality assumption 

is made on the transformed data, and the likelihood function is written in terms 

of the untransformed data.

Hierarchical priors are assigned in two stages: first to the parameters of the 

model, and second to the hyperparameters of the prior for b*. Priors for the first 

stage of the hierarchy are

7T(b() =  jV*(/3, D), «•(«*) =  i g { ~ ,  j ) ,  T(Ai) =  JV(Ao, r 2)

where J\4 is the fc-variate Normal distribution and XQ represents the Diverse

11
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Gamma distribution. Second stage priors are

7tG3) =  AfcOo.Bo), ttC D -1) =  W (J 7 ,R )

where W  represents the Wishart distribution. The priors are assumed inde­

pendent, and the hyperparameters (Pq, B0, v, 5,77, R , A0, r2) are assumed known. 

These priors are standard for hierarchical longitudinal models and are sufficiently 

flexible that either vague or informative prior information may be included by 

choosing appropriate values for the hyperparameters [9, 12, 25, 27].

The posterior distribution is obtained by multiplying the likelihood function 

and the priors and, except for the normalizing constant, may be written as

/(b j./S .D .i^ .A ly) oc -  X,b,)'(y'M -  X,b()}

X I D -5 |i  e x p { - i  £ > ,  -  /J/D-'O fc -  0 )}
“ i=L

x | B 0- ‘ | i  « p { - l  -£ (0  -  /3„)'B0- ‘(/3 -  A,)}
“  i = I

X ±  I O - ' 1* ^  e x p f - i t r lR - D - ) }
t=I

Xtr-(*'+2) exp{—2 (da2)-1} 

x r~ n e x p { - - ^  -  A0)2}
t= L

(2-s)
j = l  t = L

An interesting special case of this model assumes that A,- =  A for ail L  This

12
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model will be particularly important when we consider what the data suggest 

about the appropriateness of alternative model specifications and model compar­

ison.

A traditional Bayesian analysis would proceed by marginalizing the posterior 

in equation (2.6) over the parameters of interest. The posterior distribution for the 

BCRC model is from an unknown family of distributions, is high dimensional, and 

has an unknown normalizing constant; it is not, therefore, amenable to integration 

by analytical methods. This difficulty is characteristic of most interesting models 

and has historically been an impediment to applied Bayesian analysis because the 

integration required to marginalize and summarize the posterior distribution is 

either impractical or impossible. High speed computing and recent developments 

in MCMC simulation have helped to overcome this problem. Rather than inte­

grating the posterior analytically to get marginal distributions of the parameters, 

MCMC allows a (possibly correlated) sample to be drawn directly from the pos­

terior distribution, even if the normalizing constant is unknown. Moments of the 

distributions can be approximated by the moments of the simulated sample, and 

the approximation may be made arbitrarily precise by increasing the number of 

simulated draws from the posterior distribution. The next section describes the 

MCMC algorithm to draw simulated samples from the posterior distribution and

13
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carry out Bayesian inference.

2.4 A  Markov Chain M onte Carlo A lgorithm

The intuition underlying MCMC methods is that a Markov chain is constructed 

whose transition distribution converges to the posterior distribution. Then, start­

ing from an arbitrary point, the chain is allowed to run until it converges to its 

stationary distribution. The initial draws, generated while the chain is in its tran­

sient stage, are discarded, and the remaining draws are a sample from the posterior 

distribution that may be used for purposes of inference. The Metropolis-Hastings 

(MH) algorithm and its special case, the Gibbs sampler, are two examples of 

MCMC algorithms that are becoming more frequently used in Bayesian appli­

cations because implementation is straightforward and they are able to estimate 

models of nearly unlimited complexity. I first discuss the Gibbs sampler and the 

MH algorithm in general terms and then show how they can be used to simulate 

the BCRC model in a hybrid approach.

14
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2.4.1 The G ibbs sampler

Assume we are interested in estimating a vector of parameters 9 =  (0lT 02, . . . ,  9k). 

Let f {9  | y) be the normalized joint posterior density of 9  and define the full 

conditional distribution as the distribution of 0* conditional on the remaining OjS 

(j  £  *) as fi{9i | 9-i) where 0_, =  {91, . . . , 9 i_l ,9i+u. . . , 9 k), for i =

Note that the conditional distributions are proportional to the posterior.

The Gibbs sampler produces draws from the joint posterior distribution by 

taking successive draws from the set of full conditional distributions. Because 

draws are taken directly from the full conditional distributions, they must be from 

standard families of distributions. Specifically, the normalizing constants must be 

known and algorithms must be available to generate samples from the full condi­

tional distributions. Beginning at an arbitrary starting point 9° = (9°, 9° , . . . ,  #£), 

the Gibbs sampling algorithm proceeds as follows:

9[ is drawn from /i(0i | 9°_u y)

#2 is drawn from / 2(02 I 0°, - - -, 9k, y)

03 is drawn from / 3(03 | 0[, 0° , . . . ,  0*, y)

0* is drawn from f k(9k \ 9l_k,y).

15
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This produces a new vector of parameters 0 1. which is used in place of 0° to repeat 

the sampler and draw 02. The vector 0m on which the procedure conditions is 

fixed, and the draw of 0m+l is random, which implies that there is a distribution 

/* (0m+1 | associated with obtaining 9m+l from 9m. Since the draw of each 

0m+l depends only on 0m and not on previous draws, the sequence of draws form s 

a Markov chain with transition density /* . If /* is aperiodic and irreducible, this 

transition density converges to the posterior distribution as the number of draws 

increases [28, 71, 54].

2.4.2 T he M etropolis-Hastings algorithm

If the conditional distributions are not from a standard family of distributions, the 

parameters may be simulated by the Metropolis-Hastings (MH) algorithm, first 

proposed by Metropolis et al. [48], and later generalized by Hastings [32]. Since 

the distribution is not known, a draw is taken from a known density, q(0m+l \ 0m), 

called the proposal density or candidate generating density. Next, define the 

candidate acceptance probability as

=  . f / ( l  « "» l ) ,1 7.
( ,8  ) m m | | gn.) > ] '  ( • )

where /  is the joint posterior distribution. In the Metropolis-Hastings algorithm, 

a  draw is made from the proposal density. The draw is accepted and retained

16
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with probability a(0m+1, 0m). If the draw is not retained, then 0m+l =  0m and 

the current draw equals the previous draw. If the proposal density is symmetric 

then the probability that the draw will be accepted simplifies to

Q(«— =  (2.8)

Note that if the candidate draw comes from a higher point on the joint posterior 

distribution than the previous draw it is accepted with certainty. But if the 

candidate draw is from a point lower on the joint posterior it is only accepted

r(Qm +t\
with probability • Also note that the normalizing constant for /  cancels in

expression (2 .8 ), and therefore it is possible to simulate the posterior even if the 

normalizing constant is unknown.

2.4.3 A  hybrid approach

The BCRC model may be simulated with a hybrid approach that combines the 

Gibbs sampler and the Metropolis-Hastings algorithm. This results from the fact 

that conditional on the transformation parameter, the remaining model param­

eters are from standard distributions with known normalizing constants. These 

conditional distributions may be sampled directly using the Gibbs sampler. The 

transformation parameters, however, are not from standard distributions and re­

quire sampling by a Metropolis-Hastings step. To find the set of full conditional

17
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distributions, define

Vi, =  (D -‘ + cr-’XpCi)-1 V, = (Bo + nD’ 1)-'

bf =  Vh(D-*/} + ̂ XJyP*1) 0 =  Va(B„/30 + D-1 b<).

The full conditional distributions for the parameters except for A can be shown 

to be:

[bf | /3, D, a 2, A] =  A/fa-, V6i) (2.9)

O |b itD rff2tA J = ^ 0 9 tV<,) (2.10)

[D- 1 | b,/3, a 2, AJ =  Wfo +  n, (R “ l +  £ [(1 *  -  0 )(b , -  Z?)!)"1) (2.11)
i= l

[ff2 |b,/3,D,Al =

^ + n =L(yi>,) - ^ b i r t y j ^ 1 - x ib<) ) {212)

To find the conditional distribution of A, recall that it is proportional to the 

posterior distribution and suppress all elements of equation (2.6) that do not 

involve A into the proportionality constant:

[A| b . /^ D ,^ 2] oc exp{— -  Xibi),(y|Ai) - X i b t-)} (2.13)
1 1 ^

x exp { - ^  -  a°)2}- n  n  Vii~i-
AT i=  I  j = I  t = l

18
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Since this is not a standard distribution in A, simulation will require the MH 

algorithm. The task of simulating the transformation parameter would be sim­

plified if candidate draws could be made for each A,- individually instead of the 

vector A. To see that this is possible, suppress all terms in equation (2.14) that 

do not involve A* into the constant of proportionality. This yields the kernel of A,- 

conditional on A_*

[Ai | b ./J.D .ff2 , A_i] oc exp{— -  X,bj)'(yS' '1 -  X ,bj) (2.14)

+i(Ai -A0)2]}fUlT1.T j=t

Since this is a function only of A* each Ai may be sampled individually.

There are several possibilities for candidate generating densities. One natural 

choice is a random walk candidate generating density, Am+l =  Am +  u, where 

u ~  Af(0,e)~ The advantage of this density is that it is symmetric and easy 

to implement. Chib, Greenberg and Winkleman [16J argue, however, that very 

often the random walk does not lead to convergence. An alternative is to use 

a  candidate generating density that is tailored to the conditional density, for 

example a normal or noncentral t distribution centered at the mode of the full 

conditional. Since the mode of the full conditional is not known, an optimization 

algorithm may be necessary to find the mode. The Newton-Raphson algorithm is

19
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especially appropriate in this problem since it requires only the first and second

derivatives of the log of the density function. The normalizing constant does not

need to be known because it is additive in the log density, and therefore disappears

following differentiation. To optimize the full conditional distribution of A,- with

the Newton-Raphson algorithm, a  starting point, Aj0*, is first chosen. Iterations

then evolve according to the following function:

\(t+l) _  \W _  /  11),/3, Dypr2, A_t)
*  ** /"(A* | b, /3, D, cr2, A_j) (2-15)

where /  is the natural log of the full conditional distribution, and the first and

second derivatives are

d f  1 1 VT-r h Vij ~

- i ( A i  -  Ao) +  5 3  log ft, (2.16)
r

and

d2f  1 JX lJij log t/ij yij — 1 2 , Vij 1 y 'r  L n
a.a? ~  -----------------  + { ~ \ —

. y&iogito H v n  , 2 ( i $ - i ) . .  .. , .
1 A; Af Af r 2' 1 J

The derivatives are undefined at zero, but L’HopitaTs Rule shows that their 

limits as Af approaches zero are:

f a  | f  =  - - L  g { S a s d I  _  _  *  + £ ,  (2.18)
Aj-iO OAi <JC I  I T *  j=l
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and

h U  - * «•.>» - l M « ^ s £ n  - 1 -  mi

Once the mode of the full conditional of A* is found, a draw is taken from a 

normal or t distribution centered at the mode, and with variance equal to the 

curvature of the conditional density at the mode, where curvature is defined as

fiT
The posterior of the BCRC model is simulated by taking successive draws

from the full conditional distributions just defined conditional on the current

draw. Beginning at an arbitrary starting point, (b-0),/3(0),D -1(0), <r2(0), A(0)), it­

erate through the following sequence a large number of times:

1. Draw bj from M (b*, V bi) for i =  1 . . .  n.

2. Draw /3 from jV(/3, V#).

3. Draw D ' 1 from W (v  +  n ,R ~ l +  ELi[(b« ~  /3)(bi ~  /3)']_I)

4. Draw ^  from

5. Draw A* from either the random walk chain A|+l =  A| +u where u  ~  M(0, £2) 

or use the Newton-Raphson algorithm to find the mode of equation (2.15)

21
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and draw A,- from a Normal or t distribution centered at the mode. Then

accept the candidate draw with probability a(A^+I), ApJ) =  min{^ Â >\  1}
/ ( \  )

for i  =  1 , . . . ,  n, where /(A*) is equation (2.15).

The first draws, obtained while the Markov chain is in its transition state, are 

discarded, and the remaining draws are a sample from the posterior distribution.

Chib and Carlin [12] suggest an improved algorithm for hierarchical longitu­

dinal models that could be applied in this model. In the context of a Gaussian 

linear mixed model the conditional distribution of 0  can be written in terms of cr2 

and D only. Therefore, Chib and Carlin suggest sampling 0  and b in one block 

by first sampling from [/?|y, <x2,D] and then from [b|y,/?,cr2,D |. In the BCRC 

model it would be possible to sample 0, b, and A from [/?, b, A|y. cr2, D] using 

the same blocking. This modification speeds convergence of the sampler and im­

proves mixing in the sampling space. The algorithms used in this dissertation do 

not take advantage of this blocking strategy. As I will show, the algorithms I used 

converged rapidly and did not have problems with mixing. Future applications, 

however, should take advantage of Chib and Carlin’s improved algorithm.

22
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2.5 The M arginal Likelihood and M odel Selec­
tion

Since Bayesian analysis proceeds on the assumption that parameters are random 

and that data are fixed, hypothesis testing in the classical sense is not possible. 

Instead of testing hypotheses, a Bayesian analysis compares models. The goal of 

model comparison, or model selection, is to determine the posterior odds that a 

particular model generated the data, given the observed data. This is important 

for this study since the primary use of the BCRC model will be to discriminate be­

tween alternative risk adjustment model specifications (e.g. linear and semi-log). 

Model selection provides the basis for preferring one model over another. This 

section discusses model selection in general, especially how marginal likelihoods 

and Bayes factors can be computed from the output of an MCMC sampler, and 

then shows how marginal likelihoods and Bayes factors can be computed for the 

BCRC model.

Assume we want to compare a finite collection of models M  =  {Mi , . . . ,  M[}, 

where a  model consists of a  likelihood function and a prior: Mi =  { f ( y  | Mit6i), 

ir(6i | Mi)}. Define the prior probability of the truth of model Mi as Pr(iV/j) =  pt-.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Then the goal is to compute and compare P r(Mi \ y) for all i. By Bayes theorem,

Pr(Mj | y) <xpim{y | Mi), (2.20)

where m(y  | Mi) is the marginal likelihood of y, given by

m(y  ( Mi) = J  f ( y \  Mi,Qi)-K{Qi | MfidBi. (2 .21)

The marginal likelihood is the likelihood function averaged over the prior. It is 

also the normalizing constant of the posterior distribution.

The posterior odds ratio of model i relative to model j  is the ratio of prior

probabilities of the truth of the two models times the ratio of marginal likelihoods,

also called the Bayes factor:

P r{Mj 1 y) ft ™(y I M ) (e>
Pr (Mf \y) Pi m ( y \ M i Y  ^

If all models are assumed equally likely (pi = p for all i) then the posterior odds

equals the Bayes factor.

Model selection provides three important advantages over hypothesis testing. 

First, it is not confined to pairwise comparisons since the odds ratios of any number 

of models may be calculated. Second, the weight of evidence is symmetric in model 

selection. Whereas, in classical hypothesis testing, rejecting che null hypothesis 

does not necessarily provide support for the alternative, Bayes factors provide
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evidence both, for and against alternative models.5 The third, and most important, 

advantage of model selection is that it is not restricted to nested models. Any 

possible model that can be proposed to have generated the data can be compared 

[56].

Strategies for computing marginal likelihoods from the output of MCMC sim­

ulation have developed on two fronts. Some authors have constructed Markov 

chains that jump between different model specifications during sampling itera­

tions. In the ‘reversible jump’ method proposed by Green [31], the first step 

of the MCMC sampler chooses a model and accepts or rejects the move of the 

Markov chain to that model in a Metropolis-Hastings step. Carlin and Chib [8] 

take a sim ilar approach and introduce a model indicator into the Gibbs sampling 

scheme. This makes the priors a function of the model indicator and requires 

the use of pseudopriors, or linking densities, ir (Oi \ m  ^ i ) ,  that specify the prior 

of the parameters for model i given that the model at that iteration is not L 

The drawback to this approach is the difficulty of interpreting and specifying the 

linking densities.

Other authors have attempted to use samples generated by the MCMC algo-

5 m('y|Af•') ^  evidence against model j  in favor of model £, and is evidence in favor of
model j  and against model i.
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rithm to compute marginal likelihoods directly. Newton and Raftery [53] showed 

that the marginal likelihood can be computed as the harmonic mean of likelihood 

values

* « r R (y | M i )  =  { l | ( 7 ^ ^ ^ ) } - ‘ (2 .2 3 )

where g is a draw from the MCMC sampler. While this estimator is theoretically 

sound, it has been criticized because in practice it has problems with stability [11]. 

The source of the instability is that draws are made from the inverse likelihood. 

Gelfand and Dey [24] modify the method of Newton and Raftery by introducing 

a tuning function with thin tails into the estimation. Their estimate is

1 G
rhGD{y | Mi) =  { -  E ( „  |fl(g) * , v n )>~1- (2-24)

G 3=1 / ( y  I 6>i \  iV/i)7r(0i I Mi)

This helps overcome the instability problem, but choosing a tuning function with 

sufficiently thin tails has proven difficult, especially in high dimensional problems.

The most promising attempt to compute marginal likelihoods directly from 

MCMC output is due to Chib [11], whose approach is based on the basic marginal 

likelihood identity (BMI). By simply rearranging the posterior distribution, the 

marginal likelihood may be written as

miV 1 Mt) ~  x ( * |  « , » ) -------• t2'25)

Since m is not a function of equation (2.25) is an identity for any value 0*. If

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

an estimate of the posterior density at the point 0* ( 7r(0* | Miry),) is available, 

then Chib’s estimate of the marginal likelihood can be written in log scale as

I n ((y |M i) )  = I n / ( y  | M i,9*) -FlnTT (0* | Mi) -ln 7r(0?  | Mu y).  (2.26)

Computing the marginal likelihood requires only an estimate of the ordinate of 

the likelihood function, the priors and the posterior, all evaluated at 0*. The 

functional form of the likelihood and priors are typically known, and the challenge 

is obtaining an estimate of the posterior ordinate. Chib [11] shows how the draws 

from the MCMC sampler may be used to estimate the posterior at 0*. Partition 0 

into J  blocks. By the law of conditional probability, the posterior can be written 

as

tt(0* I y) =  7T(0t | y) X  7r(0| I y, 0t) x - - - x 7r(0} | y, 0?, 0 | , . . . ,  0}_t) (2.27)

where the subscripts indicating model i have been suppressed. The first term on 

the right hand side can be written

\V) = J ' " f  I 0 , 02, - - - ,  ej)ir(92 \ y ) ~ - 7r(0f | y)dd2 . . .  dBt (2.28)

and can be approximated by averaging the ordinates of the conditional density of 

0* over the draws of the MCMC sampler with

W i \  y)  =  4  E  <r(0; I y, d ? ........9?1) . (2.29)
U g=l
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The remaining terms on the right hand side of equation (2.27) can be estimated 

in a similar fashion, but the initial draws from the MCMC sampler may not be 

used. Consider the estimate of a typical term, tz{9% | y,9[, . .  . , 0 ^ ) .  Because 

the estimate is conditioned on (0J , . . . ,  0£_t), the draws over which the function is 

averaged must reflect this conditioning. An appropriate sample may be obtained 

by running the MCMC sampler for an additional G iterations with (0t ..  . 0fc_L) 

restricted to (0*.. . 0£_L). Chib calls this a reduced run of the sampler. The 

remaining terms on the right hand side of equation (2.27) can be estimated by

*(«* I y) =  5  E  *(«* I V. «r. - • ■. « ; - L .  s S i .  • • •. «S31)- (2-30)
l/=l

where g represents draws from the reduced run of the Gibbs sampler. After the 

posterior ordinate is evaluated at 9*, all of the ordinates are substituted into 

equation (2.26) to obtain the marginal likelihood.

Chib’s BMI approach does not suffer from instability problems, because draws 

are taken from the likelihood and priors directly, and not from the inverse likeli­

hood. In cases where the normalizing constants of the full conditional distributions 

are not known, Chib and Greenberg [15] show that posterior ordinates may be 

obtained by kernel smoothing over the distributions with unknown normalizing 

constants. Alternatively, Chib and Jeliazkov [17] have proposed a method for 

computing marginal likelihoods directly from Metropolis-Hastings output. This
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method is more general and more stable with higher dimensional models than 

kernel smoothing.

2.5.1 M arginal likelihood of th e BC R C  model

Marginal likelihoods for the BCRC model can be computed using the BMI ap­

proach. From the previous section, we may estimate the marginal likelihood by

Inm(y) =  In /(y  | A * ) + I n i r ( / T )

+  In7r(D*) ->r \ j x % { a 2 * )  - { - In 7r(Ai) 

- I n / ( /3 * ,D * ,^ * ,A * |y )  (2.31)

where (/3*,D*,rr2*, A*) are chosen from high density regions of the posterior dis­

tribution, such as the mean or the mode.6

Chib [11] argues that this estimate of the marginal likelihood is unstable for 

models in which latent variables appear in both the numerator and the denomi­

nator. Therefore, b does not appear in equation (2.31) since the they are latent

variables. We can find the likelihood function of y  conditional on (and not b)

6Because the BMI is an identity the values may be chosen anywhere in the support of the 
posterior. Chib [11] argues, however, that in the simulation context it is important that a 
sufficient number of draws are available near 0*, therefore, values should be chosen from a high 
density region of the support such as the mean or the mode.
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by using the fact that the random coefficient can be written as

bf =  /3 +  Ui, (2.32)

where u* ~  jVr(0,D). This implies that the model can be written as

yS"*1 =  X i(0  +  i n ) + * i

= Xi(3 +  w, (2.33)

where w» ~  M  (0, cr2I+XiDXQ. Therefore, the first term in equation (2.31) is the 

likelihood function for a normal distribution with mean vector 0 and covariance 

matrix a 2I  4- X*DX^.

The functional form of the first five terms on the right hand side of equa­

tion (2.31) are known along with their normalizing constants, and ordinates 

are obtained by evaluating the likelihood function or prior density function at 

(/3*, D* ,a2*, A*). This is not the case for sixth term, the posterior density ordi­

nate. Rewrite the posterior as

f i t 3-,D-,<AA-|y) =  / ( / 3 - | y ) x / ( D - |0 - , y )

x j V | / r , D - , y )

x / ( V  l /T .D '.c ^ .y ) . (2.34)

This can be estimated by estimating separately each of the terms on the right
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hand side of equation (2.34). The first term can be approximated by

f (0 ’ I y) = 7; EOS' I (2.35)

where /  is the fiill conditional distribution of /3* and g is a draw from the in itial 

run of the MCMC sampler.

Similarly, the second term in equation (2.34) can be approximated by

f t p -  I fiT,y) =  if]/(D' I fir,a*>\ b<»>,y) (2.36)

where /  is the full conditional distribution of D, and g now represents draws from 

a reduced run of the MCMC sampler where /3 is set to /3*.

The third term in (2.34) can be approximated by

/ V *  I /T .D '.y )  =  i f ; / ( c r 2> I /3-,D ',A (» ,b “ ,y ) (2.37)

where /  is the full conditional distribution of a2 and g represents draws from a 

reduced run of the MCMC sampler with (/3, D) set to (/3*,D*).

Finally, consider how to estimate the last term in equation (2.34). Since the 

normalizing constant of the frill conditional distribution of X  is unknown, kernel 

smoothing can be used to estimate the ordinate. Because the A*s are conditionally 

independent, we can write

/(A* 1 f i r , y) =  f (X{ I f i ' ,D - ,a ^ , y )  x  . . .  x  /(A ^3* ,D ',a2*,y). (2.38)
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The ordinate of the full conditional distribution of each A* can be approximated 

by
7 G t \* _  \{g)

=  ( 2 . 3 9 )

U  g = l n i  n i

where J\T is the Gaussian kernel, hj is a bandwidth parameter, and g is a draw 

from a reduced run of the MCMC sampler with parameters set to (/3*, D*, a2*, AIX) 

[4, 64, 72].

Combining equations (2.28) through (2.33), the posterior density estimate is

D%<7*,A-|y) = A/r\y)xf(D-\0',y)  

x/(o* |0M >*,y)

x n / W I ^ . D V . J V y ) .  (2.40)
t=l

Substituting this estimate and ordinates of the likelihood function and priors into 

equation (2.31) yields the log of the marginal likelihood. Finally, the Bayes factor 

for model i compared to model j  is exp{Inm(y|Mi) — \nm(y\Mj)}.

2.6 Perform ance o f the Sampler

In the previous section I showed how Chib's BMI approach [11] may be used

to estimate the marginal likelihood for the BCRC model using output from the
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MCMC sampler. The algorithms to simulate the BCRC model and to estimate 

the marginal likelihood were programmed in the GAUSS programming language. 

The program is contained in Appendix A. In this section I show how well the 

MCMC approach estimates the parameters of the BCRC model by applying the 

methods to a set of simulated data. Fitting the model to simulated data assures 

that the algorithms are coded properly, that the means of the marginal posterior 

are close to the true values, and that the true model that generated the data is 

supported by model selection.

The simulated data contained four balanced clusters of 100 observations. Slope 

parameters were four draws from a bivariate normal distribution with mean /? =  

(.5, .5) and covariance D =  (.25, .1; .1, .25). The covariates were generated from 

U{0,3). The error term was Sy ~  M(0, .10), and A< =  0 for all i.

I fit several different versions of the BCRC model to the simulated data. The 

models I report are:

• The full BCRC model with no restrictions on A*

•  A restricted version of the BCRC model with A* =  A for all i

•  A semi-log model, with A,- — 0 for all i
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• A square root transformed model, with. A* =  .5 for all i

•  A linear model, where A* =  1 for all i

Priors were chosen to represent relatively vague prior information. The hyper­

prior for /? was a normal distribution with mean vector (.25, .25) and a covariance 

matrix .1 x / The prior for a2 was an inverse gamma distribution with .1 and .1 

degrees of freedom. The prior for D~l was a Wishart distribution with location 

parameter 4 (twice the number of covariates) and scale matrix 2 x / .  Finally, At- 

had a normal prior with mean 1 and variance of 3 for all i.

I tested several starting values for the iterations and found that convergence 

was not sensitive to starting values. I programmed and tested both of the can­

didate generating densities discussed in Section 2.4.3, the random walk and a 

tailored candidate generating density. Both approaches produced similar poste­

rior estimates. The random walk candidate generating density was much faster, 

but suffered from higher serial correlation. The tailored candidate generating 

density was therefore used in the Metropolis-Hastings step for each simulation.

A full posterior analysis is presented only for Model 1. As can be seen in 

Figure 2 .1, the MCMC sampler converged quickly. It appears that no more than 

250 iterations were required for all the parameter distributions to converge. After

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

determining that the sample achieved sufficient convergence I generated a sample 

of 5000 draws after a bum-in period of 1000 iterations. The marginal posterior 

distributions are plotted in Figure 2.2, and the means and standard deviations 

of the simulated samples are reported in Table 2.1. Note that the means of the 

marginal posteriors except for A3 are all within one standard deviation of the true 

values, which suggests that the MCMC algorithm produces accurate estimates of 

the model parameters.

Autocorrelations for the sequence of draws for each of the parameters are 

plotted in Figure 2.3. The series of draws for (3 and D shows no evidence of serial 

correlation. There is diminishing serial correlation for a2 and the transformation 

parameters. The autocorrelations of the simulated sample are used determ ine  

whether there has been an adequate run length of the Markov chain. If the series 

of draws is independent and identically distributed, then the standard deviation 

of the sample mean is simply But if the series of draws is serially correlated, 

then the sample standard deviation is a function of the correlation. For example, 

the sample standard deviation of an AR(1) process can be shown to be ^*vSJ  

where p is the autocorrelation of the series. The larger and more persistent is 

the autocorrelation of a series, the larger the sample that is required to have 

reliable estimates [71]. Bayesian studies usually report the autocorrelations of the
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parameters of the model up to approximately 30 lags to indicate the accuracy of 

the simulated sample means [10, 15, 16].

If persistent serial correlation is present, there are several simulation strategies 

that may be used to reduce the correlation. For example, instead of keeping every 

draw after the burn-in period, every draw may be retained. Alternatively, only 

the final iteration may be retained after the the sampler is run a large number 

of times. While this strategy is computationally less efficient, it does produce an 

independent sample. The fact that the draws from the posterior showed little or 

no serial correlation is evidence that accurate estimates have been produced.

Marginal likelihoods and Bayes factors for each of the five models are presented 

in Table 2.2. To find the posterior odds that Model 3 generated the data versus 

Model 1, find the element in row 3 and column 1. Model 3 is 4,915 times more 

likely than Model 1. The evidence most strongly favors Models 2 and 3, the 

restricted versions with A* =  A and A, =  0 for all L This was expected since these 

models generated the data, although Model 1 generated the data as well. The 

reason Model 1 is not favored is that it has more parameters than the other models. 

The Bayes factor is sim ilar to Schwartz's Information criterion in penalizing more 

complex, higher dimensional models as long as simpler models fit the data well.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Model 2 and Model 3 are virtually indistinguishable, and the linear and square 

root models were overwhelmingly rejected.

2.7  D iscussion

In this chapter I presented the BCRC model and developed a MCMC simulation 

algorithm to obtain Bayesian estimates of the model parameters. I also showed 

how Chib’s BMI approach could be applied so that model selection could be un­

dertaken. Finally, the model was fit to a set of simulated data. Results showed 

that the means of the marginal posterior distributions of the data were very close 

to the true values and that there was very little serial correlation in the simulated 

samples. This implies that the algorithm produced reliable estimates of posterior 

means. Finally, model selection favored the lowest dimensional model that gener­

ated the data because it had fewer parameters than the other models and still fit 

the data well. In the next chapter the BCRC model is fit to a set of real data to 

risk adjust the cost of inpatient hospital care.
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Parameter
True

Value
Posterior

Mean
Standard
Deviation

Pi .500 .478 .318

P2 .500 .612 .370

02 .100 .118 .029

d n .25 .349 .801

doi .10 .101 .299

d<22 .25 .515 .524

Al .000 -.135 .314

A2 .000 -.121 .156

A3 .000 .081 .062

A4 .000 .026 .099

Table 2.1: Summary of marginal posterior distribution of BCRC model fit to 
simulated data
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BCRC
(-504.99)*

Xi= \  
(-487.53)

Ai =  0
(-504.95)

At =  .5 
(-596.50)

Ai =  l  
(-3260.43)

BCRC 1 2.09 x lO"4 2.03 x 10"4 4.41 x 1027 2.87 x 10142

$r II 4786.72 1 0.9738 2.11 x 1031 1.37 x 10146

oIIX

4915.26 1.03 1 2.17 x 1031 1.41 x 10146

Xi = .5 2.27 x 10"28 4.73 x 10"32 4.61 x 10"32 1 6.51 x 10114

\ i  = 1 3.48 x 10" 143 7.27 x 10"147 7.08 x lO" 147 1.54 x 10"115 1

'Log of marginal likelihood is in parentheses

Table 2.2: Bayes factors for alternative models fit to simulated data
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Figure 2.1: Transient stage draws of the BCRC model fit to simulated data
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Figure 2.2: Plots of marginal posteriors of model parameters
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Figure 2.3: Autocorrelations of MCMC draws fit to simulated data
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Chapter 3

Risk Adjusting the Cost of 
Coronary Artery Bypass Graft 
Surgery

3.1 Background

In recent years the healthcare industry has undergone considerable change. Most 

notably, there has been an increase in the prevalence of managed care, which 

has increased competition and introduced capitation payment schemes. These 

changes have increased interest in improving accountability and in evaluating and 

comparing the performance of healthcare providers. One method of comparing 

health care providers that is becoming more prevalent is to issue “report cards” 

that rank hospital performance based on patient outcomes such as length of stay 

[58], survival [38], and cost of treatment [70] compared to other hospitals. Simi-
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laxly, individual physicians are also evaluated and compared in physician profiles 

[35, 60].

Because healthcare providers treat heterogeneous populations, these perfor­

mance comparisons must take into account the severity of the patients'" underlying 

conditions, the comorbidities present, or the patient mix being treated. Doctors 

and hospitals that treat older, indigent, or other high risk patients may have 

higher mortality rates and costs not because they provide poorer quality of care, 

but rather because of the severity of the illness and the nature of the patients they 

treat. In order to make meaningful comparisons between healthcare providers, pa­

tient outcomes must be adjusted to reflect severity.

The process of accounting for underlying severity is called “risk adjustment.”1 

Outcomes are risk-adjusted by first regressing the performance measure on an 

index of severity, or on patient-specific variables, including risk factors and co­

morbidities. Then the residuals from this regression, which have netted out any 

severity effects, are used to rank the doctors or hospitals.

Choosing an appropriate model is an important first step in risk adjustment.

In the risk adjustment literature, the term “model” may refer to the choice of

1Some authors use the term risk adjustment for binary outcomes and severity adjustment for 
continuous outcomes [49]. I do not make this distinction.
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independent variables or to the proposed functional relationship between perfor­

mance and the independent variables. In this chapter the term is used with the 

latter definition in mind. When the performance measure is a binary outcome, 

such as survival, there is little question that a probit or logit is the appropriate 

statistical model for the risk adjustment regression. For continuous performance 

measures such as cost, the most appropriate model is less obvious. Since hospital 

costs tend to be skewed, the risk adjustment model may involve a transforma­

tion of the dependent variable so that the residuals are more nearly norm ally 

distributed. The linear model and the semi-log model are used most often in risk 

adjustment [35]. There has been little research into how appropriate these models 

are, whether another transformation is more appropriate, or whether the transfor­

mation is dependent upon context, for example the particular medical condition 

or type of healthcare provider under investigation.

The importance of using the most appropriate model was demonstrated by 

Schnitzler et al. [60], who used three alternative models to risk adjust the cost 

of treating community  acquired pneumonia at 6 hospitals and produced a rank 

ordering of physicians by cost. The models included the linear model, the semi­

log model, and robust estimation. They found that the rankings were model- 

dependent. Physicians who ranked in the highest (or lowest) 10 percent when cost
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was regressed on severity and patient characteristics often ranked much lower (or 

higher) when the log of cost was used as the dependent variable or when a robust 

estimation procedure was used.

Using the most appropriate functional form for the risk-adjustment process is 

important because patients and healthcare providers use this information. For ex­

ample, managed care organizations use risk-adjusted performance to select physi­

cians for inclusion in their referral networks [49], and consumers may use this 

information to choose healthcare providers.

In 1990, the New York Times began to publish risk-adjusted mortality rates 

for all physicians and hospitals performing coronary artery bypass graft (CABG) 

surgery in New York. Mukamel and Mushlin [52] linked these data to physician 

claims submitted to Medicare and tested whether the published risk-adjusted 

data  affected hospital and physician market shares and prices. They found that 

hospitals and physicians with better outcomes experienced higher rates of growth 

in market share and that physicians with better outcomes had higher rates of 

growth of charges for the procedure. In a similar study, Mennemeyer et al. [47] 

studied the impact of risk-adjusted outcomes reported by the Health Care Finance 

Administration (HCFA) between 1984 and 1992 on hospital admission rates for all
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community hospitals in the Unites States. They found that hospitals with twice 

the expected mortality rate experienced fewer admissions; the effect was small but 

statistically significant. Although not concerned with costs, these studies show 

that consumers are sensitive to published risk-adjustments. To my knowledge, 

there have been no studies of the impact of published, risk-adjusted cost data on 

consumer behavior.

The accuracy of reported risk-adjusted performance, and therefore the model 

used in the risk adjustment process, is important if consumers and healthcare 

providers make decisions that are motivated by the information. Incorrect infor­

mation may lead to suboptimal allocation of healthcare resources. This chapter 

uses the BCRC model to risk-adjust the cost of treating patients who undergo 

coronary artery bypass graft (CABG) procedures. Several questions are addressed 

using the model: 1) What is the most appropriate transformation of costs in a 

risk adjustment model? 2) What is the probability that A*, the BC transforma­

tion parameter, is in the neighborhood of 0 or 1? 3) Can it be assumed that the 

transformation is equal across hospitals? 4) How does the ranking induced by risk 

adjustment using the BCRC model compare to the rankings produced by maxi­

mum likelihood estimation of the default models? and 5) How does accounting 

for institutional effects affect the ranking?
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The first and second questions were addressed by fitting the BCRC model 

to the hospital data and summarizing the marginal posterior distributions of the 

transformation parameters. The third question was addressed by model compari­

son of the BCRC model and other alternatives, including the restricted version of 

the BCRC model (A,- =  A) and the semi-log model. Finally, the fourth and fifth 

questions were addressed by using the draws from the MCMC simulation to rank 

the hospitals and then making comparisons to rankings based on other models 

and unadjusted average costs.

The chapter proceeds as follows. Section 3.2 describes the data used in the 

risk adjustment. Section 3.3 describes the model fitting, including values chosen 

for hyperparameters and the performance of the MCMC sampler. The marginal 

posterior distributions are summarized in Section 3.4 and the results from the 

model selection axe presented in Section 3.5. The hospitals are ranked in Section 

3.6, and Section 3.7 concludes the chapter with discussion.

3.2 Hospital Data

Hospital cost data for this section were provided by the BJC Health System and 

were originally collected by the Greater St. Louis Healthcare Alliance (the “Al-
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Iiance”), which, was formed in 1992 as a voluntary coalition of regional hospitals, 

physicians, and managed care organizations with a  mission of improving the qual­

ity of healthcare delivery and reducing costs. This section uses the subset of 496 

CABG patients from four hospitals in the BJC Health System that was used in 

the risk adjustment analysis of the 1996 Comprehensive Hospital Performance 

Report [30].

3.2 .1  Patients

The 496 patients were selected from all cardiovascular surgery patients at four 

regional hospitals between January 1, 1995, and December 31, 1995. The Al­

liance obtained administrative discharge data from Missouri’s Hospital Industry 

D ata Institute (HIDI) and selected a sample of patients using principal diagnosis 

codes based on the International Classification of Diseases, 9th Revision, Clini­

cal Modification (ICD-9-CM) standard and Medicare’s Diagnosis Related Groups 

(DRG), which indicate primary reasons for hospitalization. Appropriate diag­

nosis codes for patient selection were determined by a panel of cardiothoracic 

surgeons. Patients admitted for CABG were included in the study if one or 

more of the following ICD-9-CM principal diagnoses were present: 36.1X Bypass 

anastomosis for heart revascularization, 402.X1 Hypertensive heart disease with
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congestive heart failure (CHF), 404.X1 Hypertensive heart and renal disease with 

CHF, 404.X3 Hypertensive heart and renal disease with CHF and renal failure, 

410.XX Acute myocardial infarction, 411XX Other acute and subacute forms 

of ischemic heart disease, 412XX Old myocardial infarction, 413.XX Angina pec­

toris, 414.XX Other forms of chronic ischemic heart disease, 428.XX Heart failure, 

785.51 Cardiogenic shock, 786.50 Chest pain not otherwise specified, 996.03 Me­

chanical complication of cardiac device, 996.72 Other complications of internal 

prosthetic device, E870.6 Accidental cut during catheterization, E878.2 Surgical 

procedure as cause of later complication, and E879.0 Cardiac catheterization as 

cause of later complication.

Patients were excluded from the study if one or more of the following principal 

diagnoses were present: 35.XX Operations on valves and septa of heart, 37.32 

Excision of aneurysm, 38.34 Resection of aorta with anastamosis, 38.44 Resec­

tion of abdominal aorta with replacement, 38.45 Resection of thoracic aorta with 

replacement, 38.64 Other excision of aorta, 39.54 Other repair on vessels and re­

entry operation, 4211 Cervical esophagostomy, and 321 Other bronchial excision. 

Patients were also excluded if they were categorized under the following DRGs: 

104 Cardiac valve procedure with catheterization or 105 Cardiac valve procedure 

without catheterization.
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A random subset of qualifying patients was selected and additional clinical 

variables, determined by a panel of cardiovascular surgeons, were abstracted from 

their patient charts by an independent medical record abstraction service.

The cost of each patient’s CABG surgery admission was obtained from the 

hospital’s internal cost accounting database (McKesson-HBO, Inc., Atlanta, GA). 

These costs were generated by a departmental ratio of cost to charges (RCC) 

methodology. Patient charges in each hospital department were multiplied by 

the RCC reported in the hospital’s annual Medicare cost report. The patient’s 

total cost was the sum of department costs. Costs computed in this manner are 

not without problems. The most serious problem is that costs generated by the 

RCC method are more accurate at higher levels of aggregation. For example, the 

departmental cost is more accurate than the costs attributed to any particular 

service provided by the department. Furthermore, the literature suggests that 

in departments with high fixed and low variable costs, or where patient charges 

are based on a percentage mark-up, RCC estimates tend to be reliable. In such 

departments as radiology and surgery, where labor and supply inputs vary sub­

stantially, RCC estimates are less accurate [42, 43]. There are also problems in 

making cross-system comparisons with cost estimates derived from RCC methods 

since hospitals differ in their department structures and departmental cost ratios.
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In spite of these defects, costs estimated by the RCC method do reflect resource 

utilization, and their use is standard practice in studies of the cost of providing 

health care [70].

3.2.2 Variables

Clinical variables used to risk-adjust the cost of CABG include blood albumin 

level (ALBUMIN), worsening congestive heart failure (CHF), prior open heart 

surgery (PRIOR), associated valve surgery (VALVE), hematocrit level (HEMA­

TOCRIT), alveolar arterial oxygen gradient (AA02), percutaneus transluminal 

coronary angioplasty (PTCA), and cardiac catheter (CATH), Table 3.1.

Serum albumin is the primary protein in the blood. Lower levels of albumin 

are associated with diabetes, renal insufficiency, and malnutrition [22]. Therefore, 

the coefficient for ALBUMIN is expected to be negative.

CHF, or the inability for the heart to provide adequate blood flow to vital 

organs, is a serious comorbidity for patients who undergo CABG surgery. The 

variable used in this analysis is a  dummy variable that equals I if the patient's 

CHF had grown worse within 30 days prior to surgery. Patients with worsening 

CHF are expected to accrue higher costs.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Repeat procedures and associated valve surgery have been shown to increase 

risk for surgical site infections, perioperative death, and post-operative adverse 

outcomes. Since these lead to higher costs, VALVE and PRIOR are expected to 

have positive coefficients.

Hematocrit is the proportion of blood volume represented by red blood cells. 

Low hematocrit has implications for oxygenation of tissues and blood viscosity. 

The normal range for adult males is 42-54%, and for females is 38-46%. The 

variable used in this analysis is a dummy variable that equals 1 if hematocrit 

was below 33%. A gender-specific measure of hematocrit would have been pre­

ferred but was not available. The coefficient for HEMATOCRIT is expected to 

be positive.

AA02 is the difference between the partial pressure of oxygen in the alveoli 

and the partial pressure of oxygen in the arterial blood. It is a measure of the 

efficiency of the lungs in moving oxygen from the air into the blood. Normal 

AA02 ranges between 5 and 25 mmHg. The variable used in this analysis is a  

dummy variable equal to 1 for AA02 levels greater than 30 mmHg. Higher levels 

indicate less efficient regulation, therefore a  positive coefficient is expected for this 

variable.
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PTCA, or balloon angioplasty, opens clogged coronary arteries via an inflated 

balloon in the artery. It is typically used as an alternative to CABG surgery in 

less severe cases since it is much less invasive. If a patient undergoes a PTCA 

and subsequently requires CABG surgery, then the PTCA was not adequate. The 

PTCA may indicate higher risk and is expected to have a positive sign.

Finally, cardiac catheterization is a procedure that locates coronary arterial 

blockages. It is a costly procedure, and patients who receive catheterization should 

incur higher costs. The expectation for CATH is positive.

Costs and patient characteristics for each of the four hospitals are summarized 

in Table 3.2. There was substantial variation across the four hospitals. The lowest 

cost hospital incurred on average $15,616 in costs to treat a CABG patient, while 

the highest cost hospital incurred on average $28,540, nearly twice as much. The 

highest cost hospital also appears to have treated more severe cases and had the 

highest proportion of patients with worsening CHF, low hematocrit, and high 

AA02.

A histogram of costs, plotted in Figure 3.1, shows the typical problem with 

using levels of hospital costs in regression analyses. Costs are highly skewed. The 

mode of costs is approximately $20,000, but there are several outliers with costs
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over $100,000.

3.3 M odel F itting

The BCRC model was fit to the clustered hospital cost data. The sampler was 

run for an initial bum-in period of 1000 iterations, and an additional 5,000 draws 

were taken from the posterior and used for inference. Several different starting 

values were tested, and convergence of the Markov chain did not depend on the 

starting point. The model that was fit to the hospital data was:

C O S T ^  =  6,o +  6ilALBUMINij +  6i2CHFiy +  6i3PRIORii +  6i4 VALVE*, 

-(-6*5HEMATOCRIT* j +  6*6AA02*i -F 6*7PTCAtJ 

-f6i8CATHy +  Sij, (3.1)

where i =  1 , . . . ,  4 indexes the hospitals, and j  =  1 , . . . ,  n* indexes within-cluster 

observations.

3.3.1 Priors

Priors for the model were based on maximum likelihood estimates that ignored the 

hospital clusters. A grid search was used to estimate the following risk-adjustment
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model:

COSTSa) =  jflb +  ftALBUMINi +  ACHFi +  APRIORi +  ^VALVEi 

+/?sHEMATOCRITi +  &AA02* +  frPTCAt- 

+/?8CATHi +  (3.2)

As can be seen in Figure 3.2, the likelihood function was maximized when the 

transformation was -.875, suggesting that a transformation close to the inverse of 

costs is the most appropriate transformation, and not a log transformation that 

might be used by default. Maximum likelihood estimates for the parameters in 

equation (3.2) are reported in Table 3.3.

Priors of b* are normal distributions with mean vector equal to the maximum 

likelihood estimates (.657, .085, .112, .118, .112, .083, .104, .219, -.804) and co- 

variance matrix with .5 on the diagonal and .25 on all off-diagonal elements. The 

prior of each A» is a normal distribution with mean -.875 and a variance of 3. The 

prior for a2 is an inverse gamma distribution with hyperparameters of .1 and .1, 

which imply a mean of 1 and variance of 10. The prior for D -1 is a Wishart dis­

tribution with 18 degrees of freedom (twice the number of independent variables) 

and a scale matrix with diagonal elements of 9 and off-diagonal elements of zero. 

All of the priors were centered at maximum likelihood estimates, yet had large
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enough variance to represent relatively vague information. Priors were not chosen 

to reflect complete ignorance (i.e. they are not uniform distributions), because 

model selection is important to this study. Model comparison is not possible when 

ignorance priors are used, because marginal likelihoods are derived by integrating 

the likelihood over the priors, which requires finite mass in the priors.

3.3.2 Performance o f th e  MCM C Sampler

The MCMC output from the model fitting was very well behaved. The first 1000 

draws of the sampler are plotted in Figures 3.3 and 3.4, which show that conver­

gence occurred rapidly. In fact, no more than 200 iterations appear to be required 

for convergence. Autocorrelations up to 30 lags for the 500 retained draws are 

plotted for transformation parameters in Figure 3.5 and for the slope coefficients 

in Figure 3.6. While the transformation parameters are serially correlated, the 

correlation is only approximately .3 by lag 30. The slope coefficients are virtually 

free of serial correlation.
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3.4 R esults

The posterior distributions for the model coefficients are plotted in Figure 3.7 and 

are summarized in Table 3.4. Because a Bayesian analysis treats parameters as 

random and produces a probability distribution rather than a point estimate, I 

report the mean of the marginal posterior distribution and the probability that 

the coefficient is greater than zero.

The means of the marginal posterior distributions had the expected signs. 

Congestive heart failure (Pr(CHF > 0) =  0.74), prior procedures (Pr(PRIOR > 

0) =  0.77) and associated valve procedures (Pr(VALVE > 0) =  0.75) all resulted 

in higher costs with high probability. Low hematocrit (Pr(HEMATOCRIT > 0) =  

0.77) and high AA02 (Pr(AA02 >  0) =  0.57) were also associated with higher 

costs. Cardiac catheterization (Pr(CATH > 0) =  0.72) and PTCA (Pr(PTCA >  

0) =  0.84) contributed to higher costs, and higher serum albumin (Pr( ALBUMIN > 

0) =  0.30) resulted in lower costs. Note by comparing Table 3.4 to Table 3.3 that 

the posterior means from the BCRC model were very similar to maximum likeli­

hood estimates.

The means and standard deviations of the unique elements of the covariance 

matrix D are reported in Table 3.5. The diagonal elements indicate how the
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effect of the risk factors varies across hospitals. The fact that the variance is large 

relative to the posterior mean, approximately .09 on average, suggests that there 

is substantial variation across hospitals.

The posterior distributions of the transformation parameters indicate that the 

the most appropriate transformation for costs is not natural log, but inverse. The 

posterior means of the transformation parameters ranged from a low o f-1.13 to a 

high of -0.65. As seen in Table 3.4, there is a very small probability that any of 

the transformation parameters is greater than zero.

The posterior distributions of the transformation parameters, plotted in Fig­

ure 3.8, also indicated that the transformations were not equal. While the dis­

tributions for the transformation for Hospitals B and D are very similar, the 

distributions for the other hospitals are not. For example, the probability that 

Ad is greater than the posterior mean of As is .48 and the probability that As is 

less than the mean of Ad is .698. But the probability that Ac  is greater than the 

posterior mean of As is .98 and the probability that As is less than the mean of 

Ac  is .97.
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3.5 M odel Selection

Additional evidence that the transformations are not equal across hospitals was 

found by model selection. I computed Bayes factors to compare a range of models, 

Table 3.6. Equal prior probability was assigned to each of the alternative models, 

therefore the Bayes factor equals the posterior odds that one model generated 

the data compared to another model. Reading across row 1 of Table 3.6 reveals 

that the data support the flexible BCRC model over all of the other models. 

The BCRC model was 2,099 times more likely to have generated the data than 

restricted BCRC model and 73,200 times more likely to have generated the data 

than the inverse transform model. Not surprisingly, reading in row 2 and column 5 

of Table 3.6 we see that the inverse transform and the restricted BCRC model are 

virtually indistinguishable from each other. Still, the evidence is strongest for the 

flexible BCRC model. Recall that the Bayes factor is a function of the posterior 

distribution ordinates and that higher dimensional models are penalized in m anner  

similar to the Schwartz criterion. The fact that the Bayes factor supports the 

BCRC model in spite of its additional parameters is strong evidence that the 

transformation differs across hospitals.
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3.6 H ospital Ranking

3.6.1 Ranking from Hierarchical Parameters

Since risk adjustment is often used to compare performance, after fitting the risk 

adjustment model I investigated how using the BCRC model for risk adjustment 

affects the hospital ranking. Most studies that use regression to estimate the 

parameters of a risk adjustment model rank the hospitals by the residuals [29, 50]. 

Predicted costs are subtracted from observed costs, and the difference is averaged 

across hospitals to represent the hospital’s overuse or underuse of resources. The 

hospital with the largest average residual is the highest cost hospital, and the 

hospital with the smallest average residual is the lowest cost hospital.

This type of ranking can be produced by computing residuals using the hier­

archical parameters (j3) of the BCRC model for each draw of the MCMC sample. 

Although a very small literature exists on ranking, Goldstein and Spiegelhalter 

suggest using the output from the MCMC simulation by computing the each hos­

pital’s rank at each, iteration of the MCMC sampler, and then computing the 

mean or median rank for each hospital [2, 23, 29]. The advantage of this approach 

is that it is then possible to compute both the probability distribution of ranks 

for each hospital and the relative odds that one hospital occupies the rank versus

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

another hospital. A residual and rank was computed for each hospital for each 

draw of the MCMC sampler, and averages were used as the basis for ranking.

The ranking produced by the hierarchical parameters of the BCRC model is 

reported in Table 3.7, along with the unadjusted ranking, and the rankings pro­

duced by maximum likelihood estimation of the linear and semi-log models. The 

risk adjustment clearly affected the hospital ranking. Risk adjustment moved 

Hospital B from the position of second highest cost to lowest cost. Hospital A 

remained in the position of highest cost, and Hospitals C and D retained their 

positions relative to each other. The BCRC model produced exactly the same 

ranking as that produced by maximum likelihood estimation of the linear and 

semi-log models. This is not entirely surprising since there are only four hospitals 

in the data and the means of the marginal posterior distributions were so similar 

to the maximum likelihood estimates. There are also only four clusters in the data 

and they were fairly evenly distributed across the costs. We would expect differ­

ences in ranking to happen where there are small margins of difference between 

hospitals.

One important question is how likely it is that one hospital occupies another 

rank. In the classical context, this is done by interval estimation around the

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

residuals using Monte Carlo simulation or bootstrapping. In the Bayesian context 

we can compute the probability distribution of the hospitals across ranks, and 

the relative odds that one hospital versus another occupies a particular rank. In 

Table 3.8 I report the probability distributions of the hospitals across ranks, which 

can be used to compute the relative odds. For example, Hospital A is ranked as 

the highest cost hospital, but there is some probability that both Hospital C and 

Hospital D are the highest. Based on the probabilities in Table 3.8, Hospital A is 

14.8 times more likely than Hospital C and 23.7 times more likely than Hospital 

D to be the highest cost hospital.

3.6.2 Ranking From Cluster Parameters

Goldstein and Spiegelhalter [29j argue that it is important to account for institu­

tional effects in the risk adjustment model, but doing this has implications for the 

ranking. On an intuitive level, the idea of risk adjustment is to remove informa­

tion from the residuals that relates to the individual risk factors and to leave any 

information that relates to the institution. If institution effects are included in 

the model, for example by including hospital dummy variables, then the average 

residual for each hospital will equal zero and ranking based on the residuals will 

not be possible.
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To illustrate the issue, consider the hypothetical data in Figure 3.9. At these 

two hypothetical hospitals, the risk factor has the same incremental effect on 

cost, and the hospitals differ only in their intercept terms. Fitting a regression 

model to these data would produce all positive residuals for the hospital with 

the larger intercept, and all negative residuals for the hospital with the smaller 

intercept- Ranking these hospitals based on the residuals would place the higher 

cost hospital above the lower cost hospital, as desired. If a hospital dummy 

variable were included, the average residuals for both hospitals would be zero.

If risk factors affect cost in different ways at each hospital then It is important 

to model hospital-specific effects explicitly. Consider another hypothetical exam­

ple in Figure 3.10. In this example, one hospital appears to treat the higher risk 

patients at relatively lower cost, but treats the lower risk patients at relatively 

higher cost, as might be the case at a university affiliated medical center versus 

a com m unity  medical center. In this case, ranking based on residuals will be ar­

bitrary whether or not institution-specific dummy variables are included in the 

model. The most appropriate ranking for this case is based on the expected cost 

conditional on a  value of the risk factor. For example, in Figure 3.10 the expected 

cost for the hospital represented by bullets is lower than the hospital represented 

by diamonds conditional on a value of 5 for the risk factor, but higher conditional
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on a value of 10 for the risk factor. It is clear that if the model includes hospital 

specific factors then the ranking must be based on expected cost conditional on a 

value of the risk factor.

Using the BCRC model as the risk adjustment model allows for this type of 

ranking by computing expected costs from the cluster-level slope parameters (bj). 

I have already presented evidence that suggests that hospital-specific effects may 

be important. Recall that the diagonal elements of the covariance matrix were 

large relative to the values of the random coefficients. This implies large variation 

in the effects of the risk factors across hospitals, and the ranking produced from the 

cluster level parameters may differ from the ranking produced by the hierarchical 

parameters at some levels of risk.

To rank the hospitals by expected cost I estimated the average predicted cost 

for each hospital as

% = P-3)
^  <7 = 1  j=l

where g indexes draws from the MCMC sampler, j  indexes within-hospital obser­

vations, and i indexes hospitals, b* is the vector of slope parameters, and Xf, is 

the vector of covariates which have been fixed at one of five levels of risk: extreme 

low, low, average, high, and extreme high. For extreme low risk I set all binary
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covariates to zero and continuous covariates the sample m inim um - For low risk I 

set all covariates to one standard deviation below the mean of the sample. Aver­

age risk is the mean of the sample. For high risk I set covariates to one standard 

deviation above the mean, and for extreme high risk I set binary covariates equal 

to 1 and continuous variables to the sample maxim um .

I encountered one obstacle computing predicted costs using this method. The 

formula in equation (3.3) does not restrict costs to be greater than zero for the 

entire vector space of the risk factors. Because A,- is negative with high prob­

ability, for large enough values of x,-j, the quantity (A^x^bj3* +  1) is less than 

one. Therefore the solution requires raising a negative number to a non-integral 

power. As might be expected, this was only a problem in creating rankings for 

high and extreme high risk. Only the iterations of the MCMC sample that yielded 

real predicted costs for equation (3.3) were used to compute predicted costs and 

rankings.

The predicted cost for each hospital conditional upon risk level is presented 

in Table 3.9 along with the average ranking. There are two important results. 

First, notice that the hospitals are ranked exactly as before for extreme low, low 

and average risk. But the ranking is different for high and extreme high risk.
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Second, the average ranking was not always consistent with the predicted cost. 

Hospital B has the highest predicted cost, but the second-highest average ranking 

conditional on both high and extreme high risk. This was because Hospital B had 

a few observations with extremely large predicted costs that skewed the average 

predicted cost but not the average ranking.

The probability distributions of Hospitals across ranking categories is pre­

sented in Table 3.10, and suggests that for extreme high risk, the relative odds 

that Hospital A is the highest cost versus Hospital B is 1.14, which implies they 

are equally likely to be the highest cost hospital. For high risk, the relative odds 

that Hospital A versus B is the highest cost hospital is 2.7, only mild evidence to 

suggest that Hospital A is the higher cost hospital.

The fact that Hospital B moved from lowest cost to highest cost suggests that 

while Hospital B provides care for low and medium risk at a lower cost, it costs 

much more to care for higher risk patients. This might be expected for a small 

community medical center. In fact, Hospital B is the smallest community medical 

center in the data set. The ranking also shows that Hospital A is the highest cost 

hospital for all levels of risk. Hospital A is a large, university affiliated medical 

center.
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3.7 Discussion

This section used the BCRC model as a risk adjustment model for the cost of 

treating CABG patients. I fit the BCRC model to data from 496 CABG patients at 

four regional hospitals in order to determine the most appropriate transformation 

and model. Posterior means for the hospitals ranged from -1.14 to -.65, suggesting 

that the most appropriate transformation was most nearly inverse, and not natural 

log. The results also suggested that the transformation should not be considered 

equal across hospitals. Not only were the posterior means for the transformation 

parameters varied, but Bayes factors overwhelmingly supported the most flexible 

BCRC model. I also used the output of the MCMC sampler to rank the hospitals 

by risk-adjusted cost. The ranking produced by the hierarchical parameters was 

identical to the ranking produced by maximum likelihood estimates of the BC, 

linear, and semi-log models. Using the cluster-level parameter estimates allowed 

for a consideration of hospital-specific effects. The ranking conditional on low and 

average risk was identical to the ranking from the hierarchical parameters. The 

ranking assuming high and extreme high risk, however, was different, and moved 

the lowest cost hospital to the position of second highest cost hospital. The 

probability distributions of the hospitals across ranks also showed that Hospital
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A and Hospital B were almost equally likely to be the highest cost hospital.
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V ariable D escription
E xpected

Sign

COST Total inpatient hospital costs

ALBUMIN Blood albumin level (gm/dl) -

CHF Worsening CHF within last 30 days dummy +

PRIOR Prior open heart surgery dummy +

VALVE Associated valve surgery dummy +

HEMATOCRIT Hematocrit <  33% dummy +

AA02 Alveolar arterial oxygen gradient 
> 30 mmHg dummy

+

PTCA Balloon angioplasty dummy +

CATH Cardiac catheter without PTCA dummy

Table 3.1: Description of clinical variables used in risk adjustment

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Hospitals
All

(n =  496)
A

(n =  107)
B

(n =  167)
C

(n = 58)
D

(n =  164)

COST $20,338 $28,540 $20,811 $17,197 $15,616

ALBUMIN 3.92 3.93 3.74 3.99 4.07

CHF 11% 19% 10% 19% 5%

PRIOR 8% 7% 9% 12% 7%

VALVE 9% 11% 9% 22% 3%

HEMATOCRIT 13% 22% 10% 10% 12%

AA02 11% 32% 3% 16% 4%

PTCA 2% 3% 2% 0% 2%

CATH 61% 64% 77% 45% 50%

Table 3.2: Characteristics of CABG patients by hospital
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V ariable Coefficient
S tan d ard

E rro r p -  value

INTERCEPT 0.657 0.074 0.0001

CHF 0.085 0.025 0.0008

PRIOR 0.112 0.027 0.0001

VALVE 0.118 0.027 0.0001

HEMATOCRIT 0.112 0.023 0.0001

AA02 0.083 0.024 0.0007

CATH 0.104 0.016 0.0001

PTCA 0.219 0.054 0.0001

ALBUMIN -0.084 0.018 0.0001

R2 =  .32

Table 3.3: Results from maximum likelihood estimation using CABG data
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V ariable M ean
S tan d ard
D eviation M edian •1 £ V 0

INTERCEPT 0.5956 0.1833 0.5937 0.9980

CHF 0.0911 0.151 0.0943 0.7356

PRIOR 0.1031 0.1496 0.1027 0.7600

VALVE 0.0979 0.1534 0.0981 0.7460

HEMATOCRIT 0.1058 0.1521 0.1029 0.7736

AA02 0.0212 0.1515 0.0184 0.5564

CATH 0.0827 0.1522 0.0825 0.7178

PTCA 0.1707 0.1814 0.1694 0.8434

ALBUMIN -0.0773 0.1543 -0.0772 0.2958

a2 0.0204 0.0079 0.019 1.0000

Ai -0.9198 0.183 -0.9189 0.0000

a2 -1.1395 0.3236 -1.1316 0.0002

A3 -0.6517 0.2011 -0.6514 0.0020

A4 -1.0472 0.352 -1.0359 0.0060

Table 3.4: Summary of marginal posterior distributions of BCRC model fit to 
CABG data
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1 2 3 4 5
Dl 0.0969

(0.0458)
A> -0.0004 0.0915

(0.0301) (0.0421)
A3 -0.0003 -0.0004 0.0903

(0.0294) (0.0285) (0.0418)
A4 0.0007 -0.0007 0.0006 0.093

(0.031) (0.0291) (0.0286) (0.045)
As -0.0002 0.0002 0.0008 0.0002 0.0926

(0.0314) (0.0299) (0.0292) (0.0286) (0.0445)
As -0.0005 0.0004 0 0.0004 0

(0.0306) (0.0296) (0.0282) (0.029) (0.0298)
Dj -0.0002 0.0003 -0.0002 0.0016 0.0015

(0.0297) (0.0288) (0.0292) (0.0299) (0.0294)
A8 0 -0.0019 0.0013 0.0011 -0.0004

(0.0317) (0.0306) (0.0305) (0.0313) (0.0308)
a 9 -0.0002 0.0009 -0.0001 -0.0002 -0.0002

(0.0306) (0.0291) (0.0287) (0.0303) (0.0301)
6 7 8 9

A, 0.0917
(0.0422)

Dr -0.0002 0.0921
(0.0294) (0.044)

A8 -0.0003 0.0004 0.1009
(0.0309) (0.0309) (0.0489)

a 9 -0.0004 -0.0003 0.0007 0.0913
(0.0294) (0.0285) (0.0306) (0.0434)

Table 3.5: Summary of marginal posterior distribution of slope covariance matrix
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M odel
B C R C

(-837.88)*
A* =  A 

(-845.53)
At =  0 

(-916.64)
A, =  -0 .5  
(-860.29)

At =  —1
(-849.08)

BCRC 1 2098.97 1.60 x 1034 5.38 x 109 7.32 x 104

A,- =  A 4.76 x KT4 1 7.61 x 103° 2.56 x 106 34.85

Zr II o 6.26 x 10-35 1.31 x 10~31 1 3.37 x 10"25 4.58 x 10"3°

Sr II I P cn 1.86 x 10"10 3.90 x 10"7 2.97 x 1024 1 1.36 x 10"5

At =  -1 1.37 x 10"5 0.0287 2.18 x 1029 7.35 x 104 1

*Log of marginal likelihood is in parentheses.

Table 3.6: Bayes factors for models fit to CABG data
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R anking

Risk Adjustment Model
No

Adjustm ent*
B C R C
Model*

L inear
Model*

Sem i-log
Model*

1 A A A A
(28,540) (1.126) (0.5767) (0.2254)

2 B C C C
(20,811) (2.012) (0.0339) (0.0419)

3 C D D D
(17,197) (2.901) (-0.2908) (-0.1348)

4 D B B B
(15,616) (3.960) (-0.3393) (-0.1554)

* Average unadjusted cost is in parentheses, 
t Average rank is in parentheses.
1 Average residual is in parentheses.

Table 3.7: Hospital rankings based on hierarchical parameters.
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H ospital A  H ospital B H ospital C H ospital D

Pr(Rank=l) 0.901 0.000 0.061 0.038

Pr(Rank=2) 0.073 0.000 0.864 0.062

Pr(Rank=3) 0.026 0.038 0.074 0.862

Pr(Rank=4) 0.000 0.962 0.000 0.038

Table 3.8: Probability distribution of hospitals across ranks
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R isk H ospital A  H ospital B H ospital C H ospital D

Extreme Low Risk $ 17,385 
(1.15)

$ 10,506 
(3.99)

$ 16,009 
(1.84)

S 12,535 
(3.00)

Low Risk $ 18,621 
(1.03)

$ 11,554 
(3.99)

$ 16,793 
(1.96)

$ 13,331 
(3.00)

Average Risk $ 22,694 
(1.00)

$ 15,183 
(3.53)

$ 19,256 
(2.00)

$ 15,217 
(3.46)

Higfi Risk $ 40,283 
(1.26)

$ 40,895 
(1.90)

$ 25,814 
(2.92)

$ 21,673 
(3.91)

Extreme High Risk $ 157,826 
(1.48)

$ 454,087 
(1.66)

$ 35,477 
(3.39)

$ 43,190 
(3.46)

Average rank is in parentheses

Table 3.9: Predicted cost and rank for five levels of risk
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H ospital A  H ospital B  H ospital C  H ospital D
Extreme Low Risk

Pr(Rank=l) 0.842 0.000 0.158 0.000
Pr(Rank=2) 0.158 0.000 0.842 0.000
Pr(Rank=3) 0.000 0.005 0.000 0.995
Pr(Rank=4) 0.000 0.995 0.000 0.005

Low Risk
Pr(Rank=l) 0.965 0.000 0.035 0.000
Pr(Rank=2) 0.035 0.000 0.965 0.000
Pr(Rank=3) 0.000 0.001 0.000 0.999
Pr(Rank=4) 0.000 0.999 0.000 0.001

Average Risk
Pr(Rank=l) 1.000 0.000 0.000 0.000
Pr(Rank=2) 0.000 0.000 1.000 0.000
Pr(Rank=3) 0.000 0.466 0.000 0.534
Pr(Rank=4) 0.000 0.534 0.000 0.466

High Risk
Pr(Rank=l) 0.732 0.268 0.000 0.000
Pr(Rank=2) 0.268 0.593 0.131 0.008
Pr(Rank=3) 0.000 0.110 0.817 0.073
Pr(Rank=4) 0.000 0.029 0.052 0.919

Extreme High Risk
Pr(Rank=l) 0.528 0.461 0.000 0.011
Pr(Rank=2) 0.463 0.447 0.033 0.057
Pr(Rank=3) 0.009 0.058 0.542 0.392
Pr(Rank=4) 0.000 0.034 0.425 0.541

Table 3.10: Probability distributions of hospitals across ranks by risk
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Figure 3.1: Histogram of inpatient hospital costs for CABG patients
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Figure 3.2: Log of likelihood function
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Figure 3.3: Transient draws from slope posteriors of BCRC model
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Figure 3.4: Transient draws of transformation posteriors of BCRC model fit to 
CABG data
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Figure 3.5: Autocorrelations of transformation and variance parameters
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Figure 3.6: Autocorrelations of slope parameters
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Figure 3.7: Plots of marginal posterior distributions of model coefficients
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Figure 3.8: Plots of marginal posterior distributions of transformation parameters
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Figure 3.10: Hypothetical cost data, different marginal effect on cost
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Chapter 4

Conclusion

The purpose of this dissertation is to present a  BC model for clustered data and to 

use the model to shed light on current practices in risk adjusting continuous health 

care outcomes. I introduced the BC transformation into a random coefficients 

model and showed how Bayesian estimates of the model parameters could be 

obtained by MCMC simulation. Fitting the model to simulated data showed that 

the MCMC algorithm performed well. Posterior means were very close to the 

parameters that generated the data, and Bayes factors supported the model that 

created the data. The BCRC model was then used as a risk adjustment model for 

the cost of treating patients undergoing CABG surgery. Results from the model 

fitting suggested that the natural log transformation of costs that is commonly 

used in risk adjustment models was not appropriate for these data, and that the
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transformation varied across hospitals. Finally, the hospitals were ranked based 

on risk-adjusted costs using both the hierarchical parameters and the cluster- 

level parameters. The ranking of the hospitals using the hierarchical parameters 

was identical to the ranking produced by maximum likelihood estimates of the 

BC, linear and semi-log models. Using the cluster-level parameters, however, the 

hospital that ranked lowest using the other methods, was ranked second most 

costly in treating high and extreme high risk patients.

There are two main contributions of this research. First, to my knowledge 

this is the first use of the BC transformation in a clustered data setting. The 

model and estimation algorithms presented here are valuable to the extent that 

functional form is an important consideration in clustered data applications. Sec­

ond, although one other author has suggested that the BC transformation may 

be valuable in a risk adjustment context, this is the first study that actually uses 

the transformation in a risk adjustment model [61].

This research also provides another example of the value of Bayesian methods 

in applied health economic research. Bayesian methods are not widely used in 

applied empirical health care research, and the Food and Drug Administration 

(FDA) does not yet accept Bayesian analyses in New Drug Applications. In spite
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of this, Bayesian techniques have found support in such applications as decision 

analysis [39], modeling disease progression [18], monitoring clinical trials [19], tech­

nology assessment [66], and meta-analysis [34], and the use of Bayesian inference 

is increasing. Perhaps the most compelling reason to use Bayesian methods in 

a risk adjustment context is the ability to perform model selection and compare 

alternative, non-nested models. There is no counterpart for comparing non-nested 

models with classical methods.

The results of the study also leave us with something of a puzzle, and suggest 

axeas for future research. While it appears that the linear and log models were 

inappropriate, in the sense that the transformation parameters were not close to 

zero or one, this did not appear to make a difference for the hospital ranking. 

But the BCRC model also allows for a much richer description of the ranking. 

Hospitals can be ranked conditional not only upon the risk level of the current 

sample of patients, but also based on different risk levels.

Refinements of the model may be helpful for future research. For example, the 

error structure that was assumed for the BCRC model is much more simple than is 

assumed in most clustered data models. Since this project began, Chib and Green­

berg [15] have shown that more general covariance matrices can be simulated by
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partitioning the matrix and simulating the parameters in blocks. Future research 

should include more general assumptions about the error covariance matrix.

There are also several issues in risk adjustment that merit further exploration. 

First, it would be important to know whether variation across hospitals requires 

different transformations across hospitals, or whether that variation can be ad­

equately modeled with hospital fixed effects. A Bayesian approach is still most 

consistent with this goal since Bayes factors can be computed to produce the 

relative odds of these non-nested alternative models.

Second, a larger, more comprehensive database is clearly needed since it is 

likely that the small number of hospitals accounts for the fact that the BCRC 

model did not produce a different hospital ranking than did the maximum like­

lihood results. It is also unclear whether the Bayes factor will favor the BCRC 

model over restricted versions in the presence of more clusters, because Bayes 

factors penalize models with higher dimensions. It would be important to study 

the robustness of this result to the number of clusters. Furthermore, the data 

used in this study lacked information on nosocomial infections, which have been 

shown to be a significant determinant of inpatient hospital costs following CABG 

procedures [36]. I suspect that many of the high cost outliers in the data are pa-
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tients with deep chest surgical site infections or antibiotic resistant bloodstream, 

infections. The lack of infection data is a serious omission.

Additional data on other medical conditions besides CABG surgery and in 

other risk adjustment contexts, such as physician profiling, would also be very 

useful. The results presented here suggest that the log transformation was not the 

most appropriate transformation, but it is not clear whether this is true in other 

settings. It would be important to study whether the most appropriate transfor­

mation is dependent entirely upon context, or whether more general statements 

can be made about the most appropriate risk adjustment model.
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Appendix A  

GAUSS Program

T h i s  p r o g r a m  e s t i m a t e s  t h e  B C R C  m o d e l  w i t h  
a  t a i l o r e d  c a n d i d a t e  g e n e r a t i n g  d e n s i t y  i n  
t h e  M H  s t e p .
b i  *  M C . 5 , . 5 :  . 5 ,  . 2 5  I  . 2 5 .  . 5 )  

m o d e l  i s  y i t  *  x i t ' b i  + -  e i t  
b i  i s  N ( b e t a . D )  
b e t a  i s  H ( b e t a O , B O ~ ( - l ) )
D " C - 1 )  i s  t f i s h C v O O , R 0 0 )  
s 2  i s  X C ( v O / 2 , d O / 2 )

n e w ;
l i b r a r y  p g r a p h . k e r n e l ;  
g r a p h s e t ;
f o n t s C ’ s i m p l e x  c o m p l e x  m i c r o b  s i m g r m a " ) ;

f o r m a t  / r d  5 , 4 ;  
t s t a r t  =  d a t e ;  
s e e d l = 3 9 3 7 8 4 1 ;  
s e e d 2 = 2 8 4 S 3 2 8 ;  
s e e d 3 = 1 4 7 2 7 4 2 ;  
s e e d 4 = 2 5 3 1 5 4 8 ;  
s e e d 5 = 1 7 3 5 9 1 4 ;  
s e e d 6 = 3 2 4 9 3 8 7 ;  
s e e d 7 = 1 3 2 4 6 2 5 ;  
s e e d 8 = 2 9 3 1 4 4 3 ;

c l e a r  p . n ;

/ «  - - - - - - - - - - - - - - - - - - - -  C r e a t e  S i m u l a t e d  D a t a
o n e = o n e s ( 4 0 0 , l ) ;  
x e s = 2 - 2 * r n d u s ( 4 0 0 , l , s e e d l ) ;
X = o n e ' x e s ;
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e r o r = s q r t  C .  1 )  » r n d n s  ( 4 0 0 , 1 » s e e d 6 )  ;  
i n d - ( 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 ) ;

g e n b e t l = ( 0 . 2 0 7 0  I  0 . 0 0 3 8 ) ;  
g e n b e t 2 = ( 0 . 7 6 5 6  I  0 . 1 0 1 8 ) ;  
g e n b e t 3 = ( 0 . 7 9 2 0  |  1 . 1 9 7 5 ) ;  
g e n b e t 4 = C 0 . 4 8 6 2  I  0 . 7 3 6 4 ) ;

g e n y l = e x p ( X [ l : 1 0 0 r  . ] * g e n b e t l  +■ e r o r [ l : 1 0 0 ] ) ;  
g e n y 2 = e x p ( X [ 1 0 1 : 2 0 0 , . ] * g e n b e t 2  + •  e r o r [ 1 0 1 : 2 0 0 ] )  ;  
g e n y 3 = e x p ( X [ 2 0 1 : 3 0 0 ,  . ] * g e n b e t 3  +  e r o r [ 2 0 1 : 3 0 0 ] )  ;  
g e n y 4 = e x p ( X [ 3 0 1 : 4 0 0 ,  . ] * g e n b e t 4  *■ e r o r [ 3 0 1 : 4 0 0 ] )  ;

y =  ( g e n y  1 1 g e n y 2 1  g e n y 3 1  g e n y 4 ) ;

n n = s u m c ( i n d ) ;  
n = r o w s ( i n d ) ;  
k = c o l s ( X ) ;
P = k ;

. p l c t r l  =  - 1 ;

. p s t y p e  =  8 ;

. p s y m s i z e  =  0 ;

x y ( s e q a ( l , l , n n ) , y ) ;

/ *  = = =  S e t  P a r a m e t e r *  f o r  P r i o r s  =  » /
/ * - - - - - - - - - - - - - - - - - - - - - - N o r m a l  p r i o r  f o r  B e t a  - - - - -
b 0 _  =  . 2 5 * o n e s ( k , l ) ;
B O  =  . l « e y e ( l c ) ;
/ « ----------------------IC  p r i q r  o f  * 2 ----------------------
v 0 _  =  . 1 ;  
d 0 _  =  . 1 ;
/ * - - - - - - - - - - - - - - - - - - - - t f i s h a r t  P R I O R  o f  D i n v - - - - - - - -
v 0 0 _  =  2 * p ;
R 0 _  =  e y e ( p ) ;
/ * - - - - - - - - - - - - - - - - - - - - - - K o r m a l  P R I O R  o f  l a m d a  - - - - - -
I a m _  =  0 * o n e s ( n , l ) ;  
t a u 2  *  3 ;

/ *  =  S e t  P a r a m e t e r s  f o r  M C M C  I t e r a t i o n s  m m /  
n O  *  1 0 0 0 ;  
m  *  5 0 0 0 ;  
c a p n  =  n O  +  m ;

/ *  =  S t a r t i n g  v a l u e s  f o r  t h e  I t e r a t i o n s  =  * /
D O  =  i n v ( v O O _ * R O _ ) ;  / *  i n v e r s e  o f  t h e  p r i o r  m e a n  * /
s 2 0  =  2 ;
b e t a O  =  b O _ + -  c h o l C i n v C B O  ) )  ’ r n d n C k . l )  ;
l a m O  =  o n e s C n . l ) ;

r e t a i n = l ;
t = l ;

/ , ------- - - - - - - - - - -  S e t  s t o r a g e  f o r  o u t p u t  - - - - - - - - - - - ------ . /

P P r o v s C v e c h ( D O ) ) ;  f *  u n i q u e  e l e m e n t s  i n  D  * f
r f m = z e r o s ( p p , m ) ;
s 2 s t 3 z e r o s ( l t m ) ;
b e t a m . = z e r o s ( k , m ) ;
1 a m h d a m = z e r o s ( n , m ) ;
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bin - zeros(m,k*n);

m d  =  z e r o s ( p p . n O ) ;
m n d b m a l  =  z e r o s ( a . n O ) ;
m a t e b  =  z e r o s ( k , n O ) ;
m 2 s  =  z e r o s C l . n O ) ;
m b  =  z e r o s ( n O , k * n ) ;

/ *  = = = = = =  B e g i n  H C H C  s i m u l a t i o n  — = = = n = = = ia u - : . a « /
do while t  l e  capn;

/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  b - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - » /
b i  =  z e r o s ( l , k * n ) ;  
s s e  =  0 ;

i  =  1 ;  j  *  1 ;  k k = l ;

d o  w h i l e  i  l e  n ;  
a i = i n d [ i j ;

y l  3  y [ j : j + n i - l , . ] ;  
l a m i  -  l a m O C i J ;  
y i  =  y l a m C y l ,  l a m i ) ;
X i  *  X [ j : j + n i - l , . ]  ;
V i  3  i n v ( C i n v ( D O )  +  ( X i ' X i ) / s 2 0  ) ) ;

b i h a t  =  V i * ( i n v ( D O ) * b e t a O  + •  ( X i ’ y i ) / s 2 0 ) ;  
b i  =  b i h a t  +  c h o l ( V i )  ’ m d n C p . l ) ;  
b l [ k k : k k + k - l ]  =  b i ’ :  
s s e  =  s s e  +■ C y i  -  X i * b i ) ’ ( y i  -  X i * b i ) ;  
k k = k k + k ;  
j  3  j  +  n i ;  
i  -  i  i ;  

e n d o ;

/ * - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  s 2  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • /
s 2 1  =  r a i n v g a m C  C v 0 _ + r o w s ( y ) ) / 2 , ( s s e + d 0 . ) / 2  ) ;

/ * - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  b e t a - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * /
b b l = z e r o s ( p , n ) ;
D i n v  =  i n v p d ( D O ) ;
V  3  i n v C B O   +■ n * D i n v ) ;
i * l ;  j 3 t ;

d o  w h i l e  i  l e  n ;  
b b l [ . , i 3  =  b l [ l , j : j + k - 1 ]  ’ ;  
i = i + t ;  j = j + k ;  
e n d o ;

b h a t  -  V * ( B 0 _ _ * b 0 _  +  D i n v » s n m c ( b b l ' ) ) ;
b e t a l  -  b h a t  + •  c h o l ( V )  ’ r n d n C k . l ) ;

/ * - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  D  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * /
e  =  b b t  -  b e t a ! ;
R 1  =  i n v p d ( i n v p d ( R O _ )  + •  e * e ' )  ;
D i  =  r n v i s h ( v O O _ + n , R l ) ;
D 1  =  i n v p d ( D l ) ;

/ « - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  l a m b d a - - - - - - - - - - - - - - - - - - - - - - - - - - - * /
l a m i  =  z e r o s C n . l ) ;  
n r l a m s  =  z e r o s ( n . l ) ;  
r w v a r s  =  z e r o s ( n , l ) ;
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i= l;  j * l ; 
do w hile  i  l e  n;

n i = i n d  [ i ]  ;
X i  =  X [ j :  j + n i - 1 ,  . 1 ;  
y i  =  y C j : j + o i - l , . I ;  
b i  =  b b t C . , i 3 ;  
l a m i  *  l a m O [ i ] ;

n r l a m s C i l  .  r w v a r  s [ i ]  =  n e w t r a p h ( n i , X i , y i , b i , l a m _ [ l ]  , s 2 1 , t a u 2 )  ;
i * i + l ;  j = j + n i ;
e n d o ;

/ * - - - - - - - - - - - - - - - - - - - - - - B e g i n  M e t r o p o l i s - H a s t i n g s  s t e p - - - - - - - - - - - - - - - - - - - - * /
i * l ;  j * l ;  
d o  w h i l e  i  l e  n ;  

n i = i n d [ i ] ;
X i  =  X C j : j + n i - l . . J ;  
y i  =  y C j : j + n i - 1 , . ] ;  
b i  =  b b l [ . , i 3 ;  
l a m i  *  l a m O C i ] ;  
r w v a r  *  s q r t ( r w v a r s [ i ] ) ;  
r n x  *  r n c h i s q ( l O ) ;
c a n d i  *  n r l a m s C i ]  *■ r w v a r « r n d n s ( l , l , s e e d 3 ) ;  
l a m i  C i ]  =  m h ( X i , y i , b i , s 2 1 , t a u 2 , l a m _ [ i ]  . l a m i , c a n d i )  ;  

j * j + n i ;  i  *  i  +■ 1 ;  
e n d o ;

/ * - - - - - - - - - - - - - - - - - - - - - - S t o r e  R e s u l t s - - - - - - - - - - - - - - - - - - * /
i f  t  l e  n O ;

m d [ . , t ]  * v e c h ( D l ) ;
m 2 s C .  , t ]  *  s 2 1 ;
m a t e b [ . ,  t ]  *  b e t a ! ;
m a d b m a l C .  , t ]  *  l a m i ;  
m b f t , . ]  =  b l ;

e l s e i f  t  g t  n O ;
d m C - , t - n 0 1  *  v e c h ( D l ) ;
s 2 m C - , t - n O ]  *  s 2 1 ;
b e t a m C .  , t - n 0 1  =  b e t a l ;
l a m b d a m C - , t - n O ]  *  l a m i ;
b m C t - n O , . ]  *  b l ;

e l s e ;  
e n d i f ;

b e t a O  *  b e t a l ;
D O  =  D l ;  
s 2 0  *  s 2 1 ;  
b O  *  b b l ;  
l a m O  *  l a m i ;

t  *  t  +  1 ;  
e n d o ;

s a v e  b m ,  b e t  a m ,  s 2 m ,  d m ,  l a m b d a m ;

/ *  .:====== R e p o r t  R e s u l t s  a n d  E x p o r t  D r a w s  « /
/ * - - - - - - - - - - - - - - - - -  C a l c u l a t e  p o s t e r i o r  s u m m a r i e s  - - - - - - - - - - - - - -  * /
b o u t  *  s u m m a r y  ( b m * ) ;  
b e t a o u t  *  s u m m a r y ( b e t a m )  ;
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s o o t  -  s u m m a r y ( s 2 m ) ;
d o u t  =  s u m m a r y  ( d m ) ;
l o u t  =  s u m m a r y  ( l a m b d a m ) ;

s i  =  "  m e a n .
s 2  =  "  s d
s 3  =  "  m e d
s  =  s l ' s 2 ' s 3 ;

/ *  = = =  P r i n t  R e s u l t s  =  * /

o u t p u t  f i l e  =  q : / d i s s e r t / s i m d a t a / o u t p u t / n r n l _ o u t . t x t  r e s e t ;

p r i n t  “  S I M U L A T I O H  R E S U L T S " ;
p r i n t  " - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
p r i n t  " F u l l  B C R C  M o d e l  ( l a m _ i  »  l a m _ i )  ,  T a i l o r e d  c a n d i d a t e  g e n e r a t i n g  d e n s i t y "  
* »

f o r m a t  / r d  4 , 6 ;  ”  S i m u l a t e d  s a m p l e  s i z e  =  "  m ;
"  C l u s t e r s  =  '*  n ;
•>.

p r i n t
f o r m a t  / r d  5 , 5 ;  "  b : ” ;  
f o r m a t  / r d  7 , 6 ;  
p r i n t  9 s ;  
f o r m a t  / r d  7 , 4 ;  
p r i n t  b o u t ;
■7 -

p r i n t
f o r m a t  / r d  5 , 5 ;  ”  b e t a : ” ;  
f o r m a t  / r d  7 , 6 ;  
p r i n t  $ s ;  
f o r m a t  / r d  7 , 4 ;  
p r i n t  b e t a o u t ;

p r i n t
f o r m a t  / r d  5 , 5 ;  ”  s 2 : " ;  
f o r m a t  / r d  7 , 6 ;  
p r i n t  $ s ;  
f o r m a t  / r d  7 , 4 ;  
p r i n t  s o u t ;  
y,
p r i n t  " -
f o r m a t  / r d  5 , 5 ;  ”  D : " ;  
f o r m a t  / r d  7 , 6 ;  
p r i n t  9 s ;  
f o r m a t  / r d  7 , 4 ;  
p r i n t  d o u t ;
* *

p r i n t
f o r m a t  / r d  5 , 5 ;  "  L a m b d a : " ;  
f o r m a t  / r d  7 , 6 ;  
p r i n t  9 s ;  
f o r m a t  / r d  7 , 4 ;  
p r i n t  l o u t ;

p n n t
? -

p rint " reta in  rate = X" C(retain-1)/Ccapn*n))*100;
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/ *
C O M P O T E  M A R G I N A L  L I K E L I H O O D S

/

/ *  S e t  t h e t a *  * /

b s t a r  =  m e a n c ( b m ) ;  b b s t a r  =  z e r o s ( k . n ) ;  i = l ;  j = l ;  
d o  w h i l e  i  l e  a ;  
b b s t a r C . , i ]  »  b s t a r  [ j ; j + k - 1 ]  ;  
i = i + i ;  j = j + f c ;  
e n d o ;

b e t a s t a r  =  n e a n c C b e t a n t ' ) ;  d s t a r  =  m e a n c ( d m ' ) ;  d d s t a r  =  x p n d ( d s t a r ) ;  
s i g s t a r  =  m e a n c ( s 2 m ’ ) ;  l a m s t a r  -  m e a n c ( l a m b d a m ’ ) ;

/ *  C o m p u t e  P r i o r  O r d i n a t e s  - - - - - - -  * /

I n f  -  I n i  i k f n o r d C y ,  X , b e t a s t a r , d d s t a r ,  s i g s t a r ,  l a m s t a r ,  i n d ) ;  p r o r d b e t a  -  
l n n o r m o r d ( b e t a s t a r , b O _ , B O  ) ;  p r o r d d  =
l n w i s h o r d ( d d 3 t a r , v 0 0 _ , i n v C R 0 _ J ) ;  p r o r d s i g  =  l n i g o r d C s i g s t a r , v O _ , d O _ )  ;  
l a m o r d  =  z e r o s ( n . l ) ;  i = t ;  d o  w h i l e  i  l e  n ;

l a m o r d  C i l  =  l n n o r m o r d C l a m s t a r C i ]  , l a m _ , t a u 2 ) ;
i = i + l ;
e n d o ;

p r o r d l a m  =  s u m c ( l a m o r d ) ;

/ *  - - - - - - -  C o m p u t e  P o s t e r i o r  o f  b e t a  * /

p o s t l  *  z e r o s ( m , l ) ;  n e w b 2 = z e r o s ( n , k ) ;  

t = l ;  d o  w h i l e  t  l e  m ;

f o r  i  ( l , n , l ) ;
n e w b l = b m [ t , . ] ;
n e w b 2 ( i , . ]  =  n e w b l t j :  j + k - t l ;

e n d f o r ;

s u m b  -  s u m c ( n e « b 2 ) ;

D O  =  x p n d ( d m [ .  , t ] ) ;
D i n v  =  i n v p d ( D O ) ;

7  =  i n v C B O   n * D i n w ) ;
b h a t  =  7 *  ( B O  * b 0 _  +■ D i n w s u m b ) ;

p o s t l C t ]  =  l n n o r m o r d ( b e t a s t a r , b h a t , 7 )  ;  
t = t + l ;  

e n d o ;

p o s t b e t a  =  s u m c ( p o s t l ) / m ;

/ •       -  »
* * * * * * * * * *  R E D U C E D  R O N S  O F  T H E  S A M P L E R  * * * * * * * * * *

T .........................   ^ - e z . T - . = ------------------ r--------- . /

/ *  =  R u n  s a m p l e r  w i t h  b e t a *  f i x e d  a n d  c o m p u t e  
f ( D *  I  b e t a * .  s 2 ( g )  .  l a m ( g )  „ y )  =  « /
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/«------------- Set storage for output  */

b m 2  =  z e r o s ( m , k * n ) ;  d m 2  =  z e r o s ( p p . m ) ;  s 2 m 2  -  z e r o s ( l . m ) ;  
l a m b d a m 2  =  z e r o s ( n . m ) ;

b e t a O  = *  b e t a s t a r ;  D O  =  d d s t a r ;  s 2 0  =  s i g s t a r ;  b O  =  b b s t a r ;  l a m O  -  
l a m s t a r ;

/ *  2 2 2 2 2 2 2 2 2 2  B e g i n  s e c o n d  M C M C  s i m u l a t i o n  2 2 2 2 2 2 2 2 2 2 2  * /  

t = l ;  d o  w h i l e  t  l e  m ;

/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  b - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • /  b l  =
z e r o s ( l , k * n ) ;  s s e  =  0 ;

j  »  1 ;  k k = l ;  f o r  i  ( 1 ,  n ,  1 ) ;  
n i = i n d [ i ]  ;  
y l  *  y C j  :  j + n i - l , . )  ;  
l a m i  =  l a m O C i j ;  
y i  =  y l a m ( y l ,  l a m i ) ;
X i  *  X [ j : j + n i - l , . ] ;
V i  =  i n v C C i n v ( D O )  +  ( X i * X i ) / s 2 0  ) ) ;  
b i h a t  *  V i « ( i n r ( D O ) * b e t a s t a r  +  ( X i * y i ) / s 2 0 ) ;  
b i  =  b i h a t  +  c h o l ( V i ) ' r n d n ( p . l ) ;  
b l [ k k : l d t + l t - l j  *  b i * ;  
s s e  =  s s e  +  ( y i  -  X i ' b i )  ’  ( y i  -  X i * b i ) ;  
i c k = k ] c + k ;  
j  =  j  +  n i ;  

e n d f o r ;

b b l = z e r o s ( p , n ) ;
j = i :

f o r  i  ( l . n . l ) ;
b b l [ .  , i j  *  b l C l . j i i + k - t l ’ .-
j s j + k ;
e n d f o r ;

/ * - - - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  s 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - « /  s s e  =  0 ;

j  *  1 ;  f o r  i  ( l . n . l ) ;  
n i = i n d C i ] ;  
y l  =  y [ j :  j + n i - l , . ]  ;  
l a m i  =  l a m O C i ] ;  
y i  =  y l a m ( y 1 ,  l a m i ) ;
X i  =  X C j :  j + n i - l , . I ;  
b i  *  b b l [ . , i j ;
s s e  =  s s e  +  ( y i  -  X i « b i )  ’  ( y i  -  X i * b i )  ;
j  =  j  +  n i ;
e n d f o r ;

s 2 1  =  m i n v g a m ( ( v 0 _ + r o w s ( y ) ) / 2 , ( s s e + d 0 _ ) / 2 ) ;

/ « - - - - - - - - - - - - - - - - - - - -  G e n e r a t i o n  o f  D   * /  e  =  b b l  -
b e t a s t a r ;  1 1 1  =  i n v p d ( i n v p d ( R 0 _ )  +  e » e ' ) ;  D 1  =  m w i s h ( v O O _ + n , R l ) ;  D 1  =  
i n v p d ( D l ) ;

/ » - - - - - - - - - - - - - - - - - - - -  G e n e r a t i o n  o f  l a m b d a  - - - - - - - - - - - - - - - - - - - - - - - - - - * /
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n r l a m s 2 = z e r o s ( n , l ) ;  

i = l ;  j = l ;  d o  w h i l e  i  l e  a ;

n i = i n d [ i l ;  X i  =  X C j :  j + n i - l , . 1 ;  y i  =  y C j : j + a i - l ,  . 1 ;  b i  =  b b l [ . , i l ;  l a m i  
=  l a m O C i l ;

n r l a m a 2 [ i 3  ,  r w v a r  s [ i ]  =  n e w t r a p h ( n i , X i , y i , b i , l a m _ [ i l  , s 2 1 , t a n 2 ) ;

i = i + t ;  j = j + n i ;

e a d o ;

/ * - - - - - - - - - - - - - - - - - - - - - - B e g i a  M e t r o p o l i s - H a s t i n g s  s t e p - - - - - - - - - - - - - - - - - - - - « /  i = l ;  j = l ;

d o  w h i l e  i  I s  a ;  
a i = i a d [ i j ;
X i  =  X C j  r  j + i r i — I ,  - 3 ;  
y i  =  y [ j  :  j + n i - l , . ]  ;  
b i  =  b b l [ .  , i j ;  
l a m i  =  l a m O [ i ] ;  
r w v a r  *  s q r t  ( r w v a r s  C i l ) ;

c a a d i  =  o r l a m s 2 [ i ]  +  r w v a r * r n d n s ( l , l , s e e d 4 ) ;

l a m l C i ]  =  m h ( X i . y i , b i , s 2 1 , t a u 2 , l a m _ [ i ] , l a m i , c a a d i ) ;

j = j + n i ;  i  *  i  +  1 ;  e a d o ;

/ « - - - - - - - - - - - - - - - - - - - - - - S t o r e  R e s u l t s - - - - - - - - - - - - - - - - - * /  b m 2 [ t , . ]  =  b l ;  d m 2 [ . , t ]
=  v e c h ( D l ) ;  s 2 m 2 [ .  , t ]  =  s 2 1 ;  l a m b d a m 2 C -  , t l  =  l a m i ;

b e t a O  -  b e t a s t a r ;  D O  =  D l ;  s 2 0  =  s 2 1 ;  b O = b b i ;  l a m O  =  l a m i ;

t  =  t  ♦  I ;  e a d o ;

/ »  C o m p u t e  P o s t e r i o r  o f  D  - - - - - - -  • /

p o s t 2  *  z e r o s ( m , l ) ;  v 0 0 a = v 0 0 . + a ;  t = l ;  d o  w h i l e  t  l e  m ;  

b i b e t a = z e r o s ( k , k ) ;
3 = 1 ;
f o r  i  C l , n , l ) ;  
n e w b l = b m 2 [ t . . ]  ;
b i b e t a = b i b e t a + ( n e w b l  C j : j + k - l j  - b e t a s t a r )  *  ( a e w b l  [ j  : j + k - l ] - b e t a s t a r )  ' ;
j = j + k ;
e n d f o r ;
R 1  =  i a v p d ( i a v p d ( R O _ )  +  b i b e t a ) ;  
p o s t 2 [ t ,  . ]  =  l n v i s h o r d ( d d 3 t a r , w 0 0 n , i n v ( R l ) )  ;  
t = t + l ;  

e n d o ;

p o s t d  =  s u m c C p o s t 2 ) / m ;

/ *  =  R u n  s a m p l e r  w i t h  b e t a * ,  D *  f i x e d  a n d  c o m p u t e  
f ( s 2 *  t  b e t a * .  D * ,  b i C g ) ,  y )  =  * /

/ *  s e t  s t o r a g e  f o r  o u t p u t   * /

b m 3  -  z e r o s  C m ,  n * k )  ;  s 2 m 3  =  z e r o s C l , m )  ;  l a m b d a m S  =  z e r o s  ( n  , m ) ;
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b e t a O  =  b e t a s t a r ;  D O  =  d d s t a r ;  s 2 0  =  s i g s t a r ;  b O  =
b b s t a r ;  l a m O  =  l a m s t a r ;

/ *  3 3 3 3 3 3 3 3 3  B e g i n  t h i r d  M C M C  s i m u l a t i o n .  3 3 3 3 3 3 3 3 3  « /

t = l ;  d o  s h i l e  t  l e  m ;

/ « - - - - - - - - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  b - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * /  b l =
z e r o s ( l , k * n ) ;  s s e  =  0 ;

j  =  1 ;  k k = l ;  f o r  i  ( 1 ,  a ,  1 ) ;  
n i = i n d [ i ] ;  
y l  =  y C j :  j + n i - l , .  3 ;  
l a m i  =  l a m O  [ i ] ;  
y i  =  y l a m C y l ,  l a m i ) ;
X i  =  X C j :  j + n i - l , . ] ;
V i  =  i n v C C i n v ( D O )  +  ( X i ' X i ) / s 2 0  ) ) ;  
b i h a t  =  V i * ( i n v ( D O ) ‘ b e t a s t a r  +  ( X i r y i ) / s 2 0 )  ;  
b i  s  b i h a t  +  c h o l ( V i ) ' r n d n ( p , l ) ;  
b l O d £ : k k + h - l ]  *>  b i » ;  
s s e  *  s s e  +  ( y i  -  X i * b i ) ' C y i  -  X i * b i ) ;  
k k = k k + l c ;  
j  =  j  +  n i ;  

e n d f o r ;

bbl=zeros(p , n ) ;
j * l ;  

f o r  i  ( l , n , l ) ;
bblC. , i ]  = b lC l.j:j+ k -lJ * ;
j = j + k ;
e n d f o r ;

/ * - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  s 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * /  s s e  »  0 ;

j  =  1 ;  f o r  i  C l . n . l ) ;  
n i - i n d C i ] ;  
y l  =  y C j :  j + n i - l , . ] ;  
l a m i  =  l a m O C i ] ;  
y i  =  y l a m C y l ,  l a m i ) ;
X i  =  X C j :  j + n i - l , .  J ;  
b i  =  b b l C . , i l ;
s s e  3  s s e  +  ( y i  -  X i * b i ) * ( y i  -  X i * b i ) ;
j  *  j  +  n i ;
e n d f o r ;

s 2 1  =  r n i n v g a m (  ( v O _ + r o B s ( y ) ) / 2 , C s s e + d O _ ) / 2  ) ;

/ * - - - - - - - - - - - - - - - - - - - -  G e n e r a t i o n  o f  l a m b d a - - - - - - - - - - - - - - - - - - - - - - - - - * /
n r l a m s 3 = z e r o s ( n . l ) ;

i= l ;  j= l ;  do B hile i  le  n ;

n i = i n d C i ] ;  X i  =  X C j : j + n i - l , . ] ;  y i  =  y [ j : j + n i - l , . ] ;  b i  =  b b l C . , i l ;  l a m i  
=  l a m O C i ]  ;

n r l a m s 3  C i ]  . r w v a r s  C i ]  =  n e B t r a p h ( n i , X i . y i . b i . l a m _ C i ]  , s 2 1 . t a a 2 ) ;  

i = i + l ;  j = j + n i ;
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d o  w h i l e  i  l e  n ;  
n i = i n d C i ]  ;
X i  =  X C j :  j + n i - l , .  1 ;  
y i  = y C j :  j + n i - l , .  J; 
b i = bblC. , i ]  ;
lami = lam O [i]; 
rwvar = sqrt(rw varsC il);

candi = nrlams3Ci] + rwvar*rndnsCl,l,seedS):

lamlCi] = m h(X i,yi,b i,s21,tau2,lam _C i] .land., ca n d i);

j = j + n i ;  i  =  i  +  1 ;  e n d o ;

/ « - - - - - - - - - - - - - - - - - - - S t o r e  R e s u l t s - - - - - - - - - - - - - - - - - - - - * /  b m 3 [ t , . ]  =  b l ;  s 2 m 3 [ .  , t ]
=  s 2 1 ;  l a m b d a m 3 [ .  , t ]  =  l a m i ;

s 2 0  =  s 2 1 ;  b O  =  b b l ;  l a m O  =  l a m i ;

t  =  t  +  1 ;  e n d o ;

/ *  C o m p u t e  P o s t e r i o r  O r d i n a t e  o f  s 2  - - - - - - -  * f  p o s t 3  *  z e r o s  ( m , l ) ;

t = l ;  d o  w h i l e  t  l e  m ;

n e w b l = b m 3 [ t , ;  
n e w b 2  =  z e r o s ( n , k ) ;

j * i ;
f o r  i  ( l , n , l ) ;
newb2Ci,.1 * newblCj: j+k-1] ;
j=j+k;
e n d f o r ;

s s e p o s t = 0 ;

i= l;  j= l;  do w hile i  l e  n; 
b i -  newb2Ci, -] ’ ; 
n i= in d ( i ] ; 
y l  *  y C j: j+ n i- l .- ] ;
X i  =  X C j :  j + n i - l , . ] ;  
l a m i  =  l a m b d a m 3 C t , i ] ;  
y i  *  y l a m C y l ,  l a m i ) ;
s s e p o s t  =  s s e p o s t  +  ( y i  -  X i * b i ) '  ( y i  -  X i * b i ) ;  

i = i + l ;  j = j + n i ;  
e n d o ;

p o s t 3 C t ]  =  l n i g o r d ( s i g s t a r , ( v O _ + n n ) / 2 , ( d O _ + s s e p o s t ) / 2 ) ;  
t = t + l ;  

e n d o ;

p o s t s i g  -  s u m c ( p o s t 3 ) / m ;

f *  =  R u n .  s a m p l e r  w i t h  b e t a * ,  D *  f i x e d  a n d  c o m p u t e  
f ( l a m *  I  b e t a * ,  D * ,  s 2 *  b i C g ) ,  y )  =  * /
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/ * - - - - - - - - - - - - - - - - - - - - - - -  S e t  s t o r a g e  f o r  o u t p u t   * /  b m . 4  =  z e r o s ( m , k * n ) ;
l a m b d a m 4  =  z e r o s ( n , m ) ;

b e t a O  =  b e t a s t a r ;  D O  =  d d s t a r ;  s 2 0  =  s i g s t a r ;  b O  =  b b s t a r ;  l a m O  =  
l a m s t a r  j

/ *  4 4 4 4 4 4 4  B e g i n ,  f o u r t h .  M C M C  s i m u l a t i o n  4 4 4 4 4 4 4 4 4 4 * /  

t = l ;  d o  u h i l e  t  l e  m ;

/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - G e n e r a t i o n  o f  b - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * /  b l  =
z e r o s ( l , k * n ) ;  s s e  -  0 ;

j  *  1; kk=l; fo r  i  (1 , n , 1); 
n i= in d [i]; 
y l  = yCj: j + n i - l , . ] ;  
lami = lamOCi]; 
y i  = ylamCyl, la m i);
X i  =  X C j :  j + n i - l , . ] ;
V i  =  i n v ( ( i n v ( D 0 )  +  ( X i ’ X i ) / s i g s t a r  ) ) ;
b i h a t  =  V i * ( i n v ( D O ) * b e t a s t a r  +  ( X i ’ y i ) / s i g s t a r )  ;
b i  =  b i h a t  +  c h o l ( V i )  * r n d n ( p , l ) ;
b l [ k k : k k + k - l ]  =  b i ' ;
s s e  =  s s e  +  C y i  -  X i * b i ) ' ( y i  -  X i * b i ) ;
k k = k k + k ;
j = j  + n i;
e n d f o r ;

b b l * z e r o s ( p , n ) ;
j« i ;  

fo r  i  ( l , n , l ) ;
b b l [ . , i ]  * b lC l.j :  j+ k -1 ]';
j=*j+k;
e n d f o r ;

/ , - - - - - - - - - - - - - - - - - - - -  G e n e r a t i o n  o f  l a m b d a - - - - - - - - - - - - - - - - - - - - - - - - - - - « /
n r l a m s 4 = z e r o s ( n ,  1) ;

j * l ;  f o r  i  C l , n , l ) ;  
n i = i n d [ i ] ;
Xi * XCjt j + n i - l , . ] ;  
y i = yCj: j + n i - l , . ] ;  
b i = b b lC .,i] ;  
lami = lamOCi];
urlams4Ci] .rwvars Ci] = neutraph(ni,X i,yi,b i,lam _C i] ,s ig s ta r ,ta u 2 );
j = j + n i ;
e n d f o r ;

/ * - - - - - - - - - - - - - - - - - - - -  B e g i n  H e t r o p o l i s - H a s t i n g s  s t e p  - - - - - - - - - - - - - - - - - - - * /  i = l ;  j * l ;
do u h ile  i  l e  n; 

ni=indC i];
X i  =  X C j : j + n i - l , . ] ;
y i  = yCj:j + n i - l , . ] ;
b i = bblC- , i ] ;
lami *  lamOCi];
r v v a r  *  s q r t ( r w v a r s  Ci]) ;

candi -  nrlams4Ci] + ruvar+mdnsCl, 1 ,seed 6); lami Cil = 
m h (X i,y i,b i,s ig s ta r , tan2,lam _Ci], lam i, candi);
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j=j+ni; i * i *■ 1; endo;

/ * - - - - - - - - - - - - - - - - - - - - - - S t o r e  R e s u l t s - - - - - - - - - - - - - - - - - - - - * /  b m 4 [ t , . ]  =  b l ;  l a m b d a m 4 [ .  , t l
=  l a m i ;

b O  =  b b l ;  l a m O  -  l a m i ;  

t  =  t  +■ 1 ;  e n d o ;

/ *  K e r n e l  e s t i m a t e s  o f  L a m b d a s  - - - - -  * /

p o s t 5 a  =  z e r o s ( l . n ) ;  p o s t S b  -  z e r o s C l . n ) ;  h  -  z e r o s C l , 1 ) ;  i = l ;  d o  
v i r i l e  i  l e  n ;

l a m r s  =  l a m s t a r [ i l ;  
l a m r r  3  l a m b d a m 4 [ i , ;

p o s t 5 a [ .  , i ]  , p o s t 5 b [ .  , i ]  , h  -  n k e r n e l ( l a m r s . l a a r r . 0 . 1 , f c k . g a a s s )  ;
i = i + - l ;
e n d o ;

p o s t 5 c  =  l n ( p o s t S a ) ;  p o s t l a m s  3  s n m c ( p o s t S c ' ) ;

/ *  - - - - -  C o m p u t e  M a r g i n a l  L i k e l i h o o d  - - - - -  » /

p r i o r s  =  p r o r d l a m  + •  p r o r d b e t a  +  p r o r d d  + •  p r o r d s i g ;  p o s t e r i o r s  =  
p o s t b e t a  +  p o s t d  +  p o s t s i g  *■ p o s t l a m s ;

m a r g l i k  -  I n f  + •  p r i o r s  -  p o s t e r i o r s ;

t e n d  3  d a t e ;  t o t s e c  =  e t b s e c C t s t a r t . t e n d ) ;  s t r  =  e t s t r ( t o t s e c ) ;

o u t p u t  f i l e  e  q : / d i s s e r t / s e c o n d / s i m d a t a / o u t p u t / n l _ m a r g l k . t r t  r e s e t ;

p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t  
p r i n t
» •
• *

p r i n t  
p r i n t  
p r i n t
o u t p u t  o f f ;

  ,  ,
******************* Procedures * * * * * * * * * * * * * * * * * * * *

,.  T-, „ = , = = = - = = = = = = = = = = = = = = » /
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b e t a  P r i o r s  -  "  p r o r d b e t a ;  
L a m d a  P r i o r s  =  "  p r o r d l a m ;
D  P r i o r s  =  "  p r o r d d ;  
s 2  P r i o r s  =  *  p r o r d s i g ;

"  b e t a  P o s t e r i o r  -  "  p o s t b e t a ;
”  L a m b d a  P o s t e r i o r  *  "  p o s t l a m s ;
“  D  P o s t e r i o r s  =  "  p o s t d ;
“  s 2  P o s t e r i o r  =  “  p o s t s i g ;

 ,^-rrmr_r w — . i . —.
»

"  L o g  L i k e l i h o o d  =  "  I n f ;
"  L o g  P r i o r s  =  "  p r i o r s ;
“  L o g  P o s t e r i o r  -  “  p o s t e r i o r s ;

" A N D  T H E  M A R G I N A L  L I K E L I H O O D  I S . . .  "  m a r g l i k ;
I t  II

" T o t a l  S a m p l e  T i m e  f o r  "  m  "  d r a w s ;  "  s t r ;
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p r o c  a u t o c o r ( v e c t o r ,  t o t l a g s ) ;  l o c a l  T ,  a u t o e o v ,  j ,  m e a n ,  a u t o c a r ,  
v e c l ,  v e c 2 ,  c O ,  n ;  T = r o v s ( v e c t o r ) ;  m e a n = m e a n c ( v e c t o r ) ;  
a u t o c o v = z e r o s ( t o t l a g s , l ) ;  j = l ;  d o  s h i l e  j  l e  t o t l a g s ;  

v e c l = v e c t o r [ 1 : T - j , . 1 ;  
v e c 2 = v e c t o r [ j  ; T - 1 ,  . 1 ;  
a u t o e o v ( j , . J - ( v e c t ’ v e e 2 ) / T ;

e n d o ;  
c O  -  a u t o e o v [ 1 , ;  
a u t o c o r  =  a u t o c o v / c O ;  
r e t p ( a u t o c o r ) ;  e n d p ;

p r o c  y l a m ( v e c t o r ,  b c p a r a m ) ;  
l o c a l  t r n s f m ;  i f  b c p a r a m = 0 ;  

t r n s f m = l n  ( v e c t o r ) ;  
e l s e ;
t r a s f m ? ( ( v e c t o r ' b c p a r a m  -  1 ) / b c p a r a m ) ;  

e n d i f ;
r e t p ( t r n s f m ) ;  
e n d p ;

p r o c  r n c b i s q ( m ) ;  / •  m  i s  a n  i n t e g e r  * /
l o c a l  v , g ;  v  =  m / 2 ;

i f  r o u n d ( v ) - v  =  0 ;
g  = - 2 * s u m c ( l n ( r n d n ( v , l ) ) ) ;
e l s e ;
v « (m -l)/2 ;
g = -2*sum c(ln (rndu(v,l))) +- m d n ( l , l ) '2 ;  
endif;

r e t p ( g ) ;
e n d p ;

p r o c  m i n v g a m ( n , d ) ;  
l o c a l  n n , c , x ;  
n n  =  n * 2 ;  
c  =  m c h i s q ( n n ) ;  
x  =  2 * d / c ;  
r e t p ( x ) ;  
e n d p ;

p r o c  s u m m a r y ( d a t ) ;
r e t p  ( m e a n c  ( d a t ' )  ' s t d c ( d a t * )  ' m e d i a n ( d a t ' ) ) ;  
e n d p ;

p r o c  r n B i s h ( n , Y ) ;  l o c a l  p , t , i , j , a , y , b  ;  p  =  r o u s ( V ) ;  T  »  z e r o s ( p , p ) ;  i  
-  1 ;  d o  o h i l e  i  l e  p ;

j  = U
d o  v h i l e  j  l e  i ;  
i f  i  —  j ;
T C i . j l  =  s q r t ( m c i i i s q ( n - i + l ) )  ;  
e l s e ;
T C i.jl = r n d n (l .l) ;  
en d if;

j  =  j  +
e n d o ;  

i  =  i  +■ 1 ;  
e n d o ;  1  =  T * T » ;
Y  =  c h o l ( v ) ;
B  =  Y ’ A « Y ;

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

rstp(B);
endp;

p r o c  n o r m o r d ( x , i m i , V ) ;
l o c a l  o r d , k , d e t v , c o n s t . k e r n ;  
k = r o w s ( x ) ;  
d e t v = d e t ( V ) ;
c o n s t = C ( 2 * p i ) ~ ( - k / 2 ) ) / s q r t ( d e t v ) ;  
k e m = e x p ( - ( x - m u )  ’  * i n v p d ( V ) * ( x - m u )  / 2 ) ;  
o r d - c o n s t « k e m ;  
r e t p ( o r d ) ;  

e n d p ;

p r o c  l n n o z i a o r d ( x , m a , Y ) ;
l o c a l  o r d , k . d e t i r ,  c o n s t ,  k e r n ;  
k = r o w s ( x ) ;  
d e t v = d e t ( V ) ;
c o n s t * - k / 2 * ( l n ( 2 * p i ) )  -  I n C s q r t ( d e t v ) ) ;  
k e r n = ( - ( x - m u )  ’ * i n v p d ( V ) * C x - o u ) / 2 ) ;  
o r d = c o n s t  +  k e r n ;  
r e t p ( o r d ) ;  

e n d p ;

p r o c  I n i g o r d ( x . a . d ) ;
l o c a l  o r d , c o n s t , k e r n ;  
c o n s t  =  ( a * l n ( d ) )  -  l n ( g a m n a ( a ) ) ;  
k e m = ( a + l ) * l n ( l / x )  -  ( d / x ) ;  
o r d - c o n s t  +■ k e r n ;  
r e t p ( o r d ) ;  

e n d p ;

p r o c  l n w i s h o r d ( W , v , S i n v ) ;
l o c a l  k , i . p r o d . c o n s t . k e r n t  , k e m 2 , o r d , t r ;  
k = r o v s ( W ) ;
i = t ;  p r o d = r e r o a ( k , l ) ;  
d o  s h i l e  1  l e  k ;

p r o d [ i ]  =  g a m m a ( ( v * - l - i ) / 2 ) ;
i = i + l ;
e n d o ;

p r o d  =  s n m c C l n ( p r o d ) ) ;
c o n s t *  -  ( C ( v * k / 2 ) * I n C 2 ) )  +  ( k * ( k - l ) / 4 ) * l n ( p i )  +■ p r o d ) ;  
t r = s u m c ( d i a g ( i n v ( S i n v ) * i n v ( W ) ) ) ;
k e r n l  *  ( w / 2 ) * l n ( d e t ( S i n v ) )  -  C ( v + k + l ) / 2 ) * l n ( d e t ( W ) ) ;  
k e m 2  *  ( - t r / 2 ) ;  
o r d = c o n s t  k e m l  k e m 2 ;  
r e t p ( o r d ) ;  

e n d p ;

p r o c  l n l i k f n o r d C y . X . b e t a , D , s i g , l a m , i n d ) ;  
l o c a l  l a m i . n . n i . n n , c o n s t . k e r n , s t o r l ,  
s t o r 2 ,  s t  o r 3 ,  p r o d ,  o r d ,  y i l a m ,  y l ,  X i ,  j .  d e t e r ,  g a m ;  

n n = r o B s ( y ) ;  
n * r o s s ( i n d ) ;  
s t o r l = z e r o s ( n , l ) ;  
s t o r 2 = z e r o s ( n , l ) ;  
s t o r 3 = z e r o s ( n ,  1 ) ;  
c o n s t = ( - n n / 2 ) * l n ( 2 * p i ) ;

i= i ;
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f o r  i  ( l , n , l ) ;  
n i = i n d [ i ] ;  
l a m i = l a m [ i ] ;  
y i = y [ j  :  j + n i - l ] ;
X i = X [ j :  j + n i - l , . ]  ;  
y i l a m = y l a m ( y i , l a m i ) ;  
g a m = ( s i g * e y e ( n i ) + X i * D * X i ’ ) ;
s t o r l  [ l ] = ( - 1 / 2 )  *  ( y i l a m - X i * b e t a )  ’ « i n v p d ( g a m )  »  ( y i l a m - X i * b e t a )  ;  
s t o r 2 [ i ] = s n m c ( C l a m i - l ) . « l n ( y i ) ) ;  
s t o r 3  [ i ] = ( - l / 2 ) * l a ( d e t ( g a m ) ) ;  
j = j + n i ;  

e n d f o r ;

k e r n  = s u m c ( s t o r l ) ;  p r o d  = s u m c ( s t o r 2 ) ;  d e t e r = s u m c ( s t o r 3 ) ;  

o r d = c o n s t + d e t e r + k e m + p r  o d ;  

r e t p ( o r d ) ;  e n d p ;

p r o c  ( 2 )  =  n e v t r a p h ( n i , X , y , b , p r l a m , s 2 1 , t a u 2 ) ;  
l o c a l  1 1 ,  n r l o o p ,  c o n v e r g e ,  t e r m l ,  t e z m 2 ,  t  e r m 3 ,  t  
e r m 4 . p l , 1 2 , 1 3 , y j , x j , y l m , f l , f 2 » l a o i t , t l , t 2 , t 2 0 , t 3 , t 4 , l t l ;

1 1 = 1 ;  n r l o o p = l ;  c o n v e r g e = 0 ;  d o  w h i l e  c o n v e r g e  I t  1 ;

t e r m l = z e r o s ( n i , 1 ) ;  t e r m 2 = z e r o s ( n i , 1 ) ;  t e r m 3 = z e r o s ( n i , 1 ) ;  
t e r m 4 = z e r o s ( n i , l ) ;

/ * - - - - - - - - - - - - - - - - - - - - - - C o m p u t e  d e r i v a t i v e s - - - - - - - - - - - - - - - - - - - - - - - - - • /  p l = l ;  d o  w h i l e  p i
l e  n i ;

12= 11*2 ;
1 3 = 1 1 * 3 ;  
y j = y [ p l ] ;  
r j = X [ p l ,  , 3 ;  
y l m * y l a m ( y j , 1 1 ) ;

/ • « « * * *  F i r s t  D e r i v a t i v e  * • * » * » /

t e r m l  [ p i ]  = ( y l m - x j  * b i )  *  (  C  ( y  j  * 1 1 )  * l n ( y j  ) / ! ! ) + ( 1 - y j  * 1 1 )  / 1 2 ) ;  
t e r m 2 [ p l ] = ( ( l n C y j ) “ 3 )  -  ( l n ( y j ) * 2 ) » ( r j * b i ) ) ;

/ » * « » * *  S e c o n d  D e r i v a t i v e  * * » » * * /

t e r m 3 [ p l I = C C y j * l l ) * l n C y j ) / l l - ( y j - l l ) / 1 2 + l / 1 2 ) * 2  +
( y l m - x j * b i ) * ( ( y j * 1 1 ) * ( l n ( y j ) * 2 ) / l l  -  2 * ( y j * l l ) * C l n C y j ) ) / 1 2  +  2 * ( y j * l l - l ) / 1 3 ) ;  

t e z m 4 [ p l ]  = ( l n ( y j * 4 ) / 4  +  ( l n C y j ) - x j * b i ) * C ( l n ( y j ) * 3 ) / 3 ) ) ;

/ * * * * * *  S u m s ,  e t c .  * * * * * * * * * * * * * /

p l = p l + l ;
e n d o ;

t l  =  -  s o m e  ( t e r m l )  / s 2 1 ;  
t 2  =  s n m c ( l n ( y ) ) ;  
t 2 0 =  - s a m c ( t e r m 2 ) / s 2 1 ;  
t 3  =  - s n m c ( t e r m 3 ) / s 2 1 ;  
t 4  =  - s u m c ( t e r m 4 ) / s 2 1 ;
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/*•***« Define limits at zero «***«/

i f  X I  e q  0 ;
f l = C t 2 0  -  p r l a m / t a u 2  + •  t 2 )  ;
f 2 = C t 4  -  l / t a u 2 ) ;
e l s e ;
f l  = ( t t  -  ( ( 1 1 - p r l a m )  / t a u 2 )  +■ t 2 ) ;
1 2  = ( t 3  -  ( l / t a u 2 ) ) ;  
e n d i f ;

l a m i t  =  I I  -  ( f l / f 2 ) ;

p r i n t  " l a m i t  =  "  l a m i t ;  » /

i f  l a m i t  g t  4 5 ;
l a m i t  =  1 / l a m i t ;  
e l s e i f  l a m i t  I t  - 4 5 ;  
l a m i t  3  . 0 1 ;  
e n d i f ;

i f  a b s ( f l )  l e  . 0 5 ;
c o n v e r g e 3 ! ;  U 3 l a m i t ;
e l s e ;
l l s l a m i t ;
n r l o o p  3  n r l o o p + 1 ;

i f  n r l o o p  g t  2 0 0 0 ;
p r i n t  " N O  C O N V E R G E N C E " ;  
e n d ;  

e l s e ;  
e n d i f ;

e n d i f ;  
e n d o ;  I t l  3  - l / f 2 ;

r e t p C l a m i t , l t l ) ;  e n d p ;

p r o c  m h ( x , y , b i , s 2 1 , t a u 2 > l a m _ , l a m 0 , c a n d ) ;  
l o c a l  y o l d , y n e v > p r o d , j a c l , j a c 2 , s s e 0 > s  
s e l  , n n m ,  d e n , t e s t , l a m l  , u n i  , t e r m l a , t e r m 2 a ,  t e r m l b ,  t e r m 2 b ;

p r o d  3  s u m c ( l n C y ) ) ;  y o l d  3  y l a m C y . l a m O ) ;  y n e v  =  y l a m C y , c a n d i ) ;

t e r m l a  =  ( y o l d - X * b i )  *  ( y o l d - X * b i ) / s 2 1 ;  t e r m l b  =  ( l a m i  -  l a m _ * 2 ) / t a u 2 ;  
t e r m 2 a  3  ( y n e v - X * b i )  ’ ( y n e w - X » b i ) / s 2 1 ;  t e r m 2 b  3  C c a n d  -  l a m _ ~ 2 ) / t a n 2 ;  
s s e O  3  - ( t e r m l a  t e r m l b )  / 2  ;  s s e l  3  - C t e r m 2 a  +  t e r m 2 b ) / 2  ;

j a c l = p r o d c ( y i “ ( c a n d i - l )  ) ;  j a c 2 3 p r o d c ( y i * ( l a m i - l )  ) ;

t e s t  3  e s p C s s e l  -  s a e 0 ) * C j a c l / j a c 2 ) ;

i f  t e s t  g e  1 ;  l a m l  =  c a n d i ;  e l s e ;

u n i = m d n ( l ,  1 )  ;  
i f  u n i  l e  t e s t ;  
l a m l  3  c a n d i ;  
e l s e ;
l a m l  3  l a m i ;  
e n d i f ;
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endif; retp(laml); endp;
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